100+ datasets found
  1. Number of new cancer cases and deaths in the U.S. by gender 2025

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of new cancer cases and deaths in the U.S. by gender 2025 [Dataset]. https://www.statista.com/statistics/280700/new-cancer-cases-and-deaths-in-the-us-by-gender/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    United States
    Description

    In 2025, it was estimated that there would be over 972 thousand new cancer cases among women in the United States. This statistic illustrates the estimated number of new cancer cases and deaths in the United States for 2025, by gender.

  2. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  3. Cancer Rates by U.S. State

    • kaggle.com
    zip
    Updated Dec 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heemali Chaudhari (2022). Cancer Rates by U.S. State [Dataset]. https://www.kaggle.com/datasets/heemalichaudhari/cancer-rates-by-us-state
    Explore at:
    zip(219237 bytes)Available download formats
    Dataset updated
    Dec 26, 2022
    Authors
    Heemali Chaudhari
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State Rates of dying from cancer also vary from state to state.

    *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

  4. CDC WONDER: Cancer Statistics

    • data.virginia.gov
    • healthdata.gov
    • +4more
    html
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://data.virginia.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 21, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  5. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r
    Explore at:
    zip(146998 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  6. Breast cancer death rate in the U.S. in 2023, by state

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Breast cancer death rate in the U.S. in 2023, by state [Dataset]. https://www.statista.com/statistics/779894/death-rate-breast-cancer-us-by-state/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, there were **** deaths from breast cancer per 100,000 population in the state of South Dakota, the lowest of any state that year. This statistic shows the death rate from breast cancer in the U.S. in 2023, by state.

  7. M

    Breast Cancer Statistics 2025 By Types, Risks, Ratio

    • media.market.us
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Breast Cancer Statistics 2025 By Types, Risks, Ratio [Dataset]. https://media.market.us/breast-cancer-statistics/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Editor’s Choice

    • Global Breast Cancer Market size is expected to be worth around USD 49.2 Bn by 2032 from USD 19.8 Bn in 2022, growing at a CAGR of 9.8% during the forecast period from 2022 to 2032.
    • Breast cancer is the most common cancer among women worldwide. In 2020, there were about 2.3 million new cases of breast cancer diagnosed globally.
    • Breast cancer is the leading cause of cancer-related deaths in women. In 2020, it was responsible for approximately 685,000 deaths worldwide.
    • The survival rate of breast cancer has improved over the years. In the United States, the overall five-year survival rate of breast cancer is around 90%.
    • The American Cancer Society recommends annual mammograms starting at age 40 for women at average risk.
    • Although rare, breast cancer also occurs in men. Less than 1% of breast cancer cases are diagnosed in males.

    (Source: WHO, American Cancer Society)

    https://market.us/wp-content/uploads/2023/04/Breast-Cancer-Market-Value.jpg" alt="">

  8. Cancer County-Level

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer County-Level [Dataset]. https://www.kaggle.com/datasets/thedevastator/exploring-county-level-correlations-in-cancer-ra
    Explore at:
    zip(146998 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Exploring County-Level Correlations in Cancer Rates and Trends

    A Multivariate Ordinary Least Squares Regression Model

    By Noah Rippner [source]

    About this dataset

    This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.

    To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.

    Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!

    Research Ideas

    • Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
    • Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
    • Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates

    Acknowledgements

    If you use this dataset i...

  9. Deaths from breast cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths from breast cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184615/deaths-by-breast-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The rate of breast cancer deaths in the U.S. has dramatically declined since 1950. As of 2023, the death rate from breast cancer was **** per 100,000 population. However, cancer is a serious public health issue in the United States and is the second leading cause of death among women. Breast cancer incidence Breast cancer symptoms include lumps or thickening of the breast tissue and may include changes to the skin. Breast cancer is driven by many factors, but age is a known risk factor. Among all age groups, the highest number of invasive breast cancer cases were among those aged 60 to 69. The incidence rate of new breast cancer cases is higher in some ethnicities than others. White, non-Hispanic women have the highest incidence rate of breast cancer, followed by non-Hispanic Black women. Breast cancer treatment Breast cancer treatments usually involve several methods, including surgery, chemotherapy and biological therapy. Types of cancer diagnosed at earlier stages often require fewer treatments. A majority of early stage breast cancer cases in the U.S. receive breast conserving surgery and radiation therapy.

  10. County Cancer Death Rates

    • kaggle.com
    zip
    Updated Dec 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). County Cancer Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/county-cancer-death-rates/discussion
    Explore at:
    zip(883348 bytes)Available download formats
    Dataset updated
    Dec 3, 2023
    Authors
    The Devastator
    Description

    County Cancer Death Rates

    County-level cancer death rates with related variables

    By Noah Rippner [source]

    About this dataset

    This dataset provides comprehensive information on county-level cancer death and incidence rates, as well as various related variables. It includes data on age-adjusted death rates, average deaths per year, recent trends in cancer death rates, recent 5-year trends in death rates, and average annual counts of cancer deaths or incidence. The dataset also includes the federal information processing standards (FIPS) codes for each county.

    Additionally, the dataset indicates whether each county met the objective of a targeted death rate of 45.5. The recent trend in cancer deaths or incidence is also captured for analysis purposes.

    The purpose of the death.csv file within this dataset is to offer detailed information specifically concerning county-level cancer death rates and related variables. On the other hand, the incd.csv file contains data on county-level cancer incidence rates and additional relevant variables.

    To provide more context and understanding about the included data points, there is a separate file named cancer_data_notes.csv. This file serves to provide informative notes and explanations regarding the various aspects of the cancer data used in this dataset.

    Please note that this particular description provides an overview for a linear regression walkthrough using this dataset based on Python programming language. It highlights how to source and import the data properly before moving into data preparation steps such as exploratory analysis. The walkthrough further covers model selection and important model diagnostics measures.

    It's essential to bear in mind that this example serves as an initial attempt at creating a multivariate Ordinary Least Squares regression model using these datasets from various sources like cancer.gov along with US Census American Community Survey data. This baseline model allows easy comparisons with future iterations intended for improvements or refinements.

    Important columns found within this extensively documented Kaggle dataset include County names along with their corresponding FIPS codes—a standardized coding system by Federal Information Processing Standards (FIPS). Moreover,Met Objective of 45.5? (1) column denotes whether a specific county achieved the targeted objective of a death rate of 45.5 or not.

    Overall, this dataset aims to offer valuable insights into county-level cancer death and incidence rates across various regions, providing policymakers, researchers, and healthcare professionals with essential information for analysis and decision-making purposes

    How to use the dataset

    • Familiarize Yourself with the Columns:

      • County: The name of the county.
      • FIPS: The Federal Information Processing Standards code for the county.
      • Met Objective of 45.5? (1): Indicates whether the county met the objective of a death rate of 45.5 (Boolean).
      • Age-Adjusted Death Rate: The age-adjusted death rate for cancer in the county.
      • Average Deaths per Year: The average number of deaths per year due to cancer in the county.
      • Recent Trend (2): The recent trend in cancer death rates/incidence in the county.
      • Recent 5-Year Trend (2) in Death Rates: The recent 5-year trend in cancer death rates/incidence in the county.
      • Average Annual Count: The average annual count of cancer deaths/incidence in the county.
    • Determine Counties Meeting Objective: Use this dataset to identify counties that have met or not met an objective death rate threshold of 45.5%. Look for entries where Met Objective of 45.5? (1) is marked as True or False.

    • Analyze Age-Adjusted Death Rates: Study and compare age-adjusted death rates across different counties using Age-Adjusted Death Rate values provided as floats.

    • Explore Average Deaths per Year: Examine and compare average annual counts and trends regarding deaths caused by cancer, using Average Deaths per Year as a reference point.

    • Investigate Recent Trends: Assess recent trends related to cancer deaths or incidence by analyzing data under columns such as Recent Trend, Recent Trend (2), and Recent 5-Year Trend (2) in Death Rates. These columns provide information on how cancer death rates/incidence have changed over time.

    • Compare Counties: Utilize this dataset to compare counties based on their cancer death rates and related variables. Identify counties with lower or higher average annual counts, age-adjusted death rates, or recent trends to analyze and understand the factors contributing ...

  11. Number and rates of new cases of primary cancer, by cancer type, age group...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2021). Number and rates of new cases of primary cancer, by cancer type, age group and sex [Dataset]. http://doi.org/10.25318/1310011101-eng
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number and rate of new cancer cases diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  12. a

    5 year Male Colorectal Cancer Incidence MSSA

    • usc-geohealth-hub-uscssi.hub.arcgis.com
    Updated Nov 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). 5 year Male Colorectal Cancer Incidence MSSA [Dataset]. https://usc-geohealth-hub-uscssi.hub.arcgis.com/datasets/5-year-male-colorectal-cancer-incidence-mssa
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    Medical Service Study Areas (MSSAs)As defined by California's Office of Statewide Health Planning and Development (OSHPD) in 2013, "MSSAs are sub-city and sub-county geographical units used to organize and display population, demographic and physician data" (Source). Each census tract in CA is assigned to a given MSSA. The most recent MSSA dataset (2014) was used. Spatial data are available via OSHPD at the California Open Data Portal. This information may be useful in studying health equity.Age-Adjusted Incidence Rate (AAIR)Age-adjustment is a statistical method that allows comparisons of incidence rates to be made between populations with different age distributions. This is important since the incidence of most cancers increases with age. An age-adjusted cancer incidence (or death) rate is defined as the number of new cancers (or deaths) per 100,000 population that would occur in a certain period of time if that population had a 'standard' age distribution. In the California Health Maps, incidence rates are age-adjusted using the U.S. 2000 Standard Population.Cancer incidence ratesIncidence rates were calculated using case counts from the California Cancer Registry. Population data from 2010 Census and SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators. Yearly SEER 2015 census tract estimates by race/origin (controlling to Vintage 2015) were used to estimate population denominators for 5-year incidence rates (2013-2017)According to California Department of Public Health guidelines, cancer incidence rates cannot be reported if based on <15 cancer cases and/or a population <10,000 to ensure confidentiality and stable statistical rates.Spatial extent: CaliforniaSpatial Unit: MSSACreated: n/aUpdated: n/aSource: California Health MapsContact Email: gbacr@ucsf.eduSource Link: https://www.californiahealthmaps.org/?areatype=mssa&address=&sex=Both&site=AllSite&race=&year=05yr&overlays=none&choropleth=Obesity

  13. u

    Cancer death rates by county, 2019-2023 - Dataset - Healthy Communities Data...

    • midb.uspatial.umn.edu
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Cancer death rates by county, 2019-2023 - Dataset - Healthy Communities Data Portal [Dataset]. https://midb.uspatial.umn.edu/hcdp/dataset/cancer-death-rates-by-county-2019-2023
    Explore at:
    Dataset updated
    Oct 24, 2025
    Description

    Cancer death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.

  14. Number of prostate cancer cases and deaths in the U.S. 2025

    • statista.com
    Updated Sep 25, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2017). Number of prostate cancer cases and deaths in the U.S. 2025 [Dataset]. https://www.statista.com/statistics/1472970/prostate-cancer-cases-and-deaths/
    Explore at:
    Dataset updated
    Sep 25, 2017
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    United States
    Description

    In 2025, there were an estimated 313,780 new cases of prostate cancer in the United States, as well as 35,770 deaths. That year, prostate cancer cases accounted for around 15 percent of all new cancer cases and around six percent of all deaths due to cancer. This statistic shows the number of prostate cancer cases and deaths in the United States in 2025.

  15. Prostate cancer death rate in the U.S. in 2023, by state

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Prostate cancer death rate in the U.S. in 2023, by state [Dataset]. https://www.statista.com/statistics/791513/death-rate-prostate-cancer-us-by-state/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, there were around **** deaths from prostate cancer per 100,000 population in the state of Mississippi, making it the state with the highest prostate cancer death rate that year. This statistic shows the death rate from prostate cancer in the U.S. in 2023, by state.

  16. AH Provisional Cancer Death Counts by Month and Year, 2020-2021

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). AH Provisional Cancer Death Counts by Month and Year, 2020-2021 [Dataset]. https://data.virginia.gov/dataset/ah-provisional-cancer-death-counts-by-month-and-year-2020-2021
    Explore at:
    csv, json, xsl, rdfAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Provisional death counts of malignant neoplasms (cancer) by month and year, and other selected demographics, for 2020-2021. Data are based on death certificates for U.S. residents.

  17. l

    Lung Cancer Mortality

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://data.lacounty.gov/maps/lacounty::lung-cancer-mortality
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  18. Table 1_Trends in cervical cancer incidence and mortality in the United...

    • frontiersin.figshare.com
    docx
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xianying Cheng; Ping Wang; Li Cheng; Feng Zhao; Jiangang Liu (2025). Table 1_Trends in cervical cancer incidence and mortality in the United States, 1975–2018: a population-based study.docx [Dataset]. http://doi.org/10.3389/fmed.2025.1579446.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Xianying Cheng; Ping Wang; Li Cheng; Feng Zhao; Jiangang Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundCervical cancer incidence and mortality rates in the United States have substantially declined over recent decades, primarily driven by reductions in squamous cell carcinoma cases. However, the trend in recent years remains unclear. This study aimed to explore the trends in cervical cancer incidence and mortality, stratified by demographic and tumor characteristics from 1975 to 2018.MethodsThe age-adjusted incidence, incidence-based mortality, and relative survival of cervical cancer were calculated using the Surveillance, Epidemiology, and End Results (SEER)-9 database. Trend analyses with annual percent change (APC) and average annual percent change (AAPC) calculations were performed using Joinpoint Regression Software (Version 4.9.1.0, National Cancer Institute).ResultsDuring 1975–2018, 49,658 cervical cancer cases were diagnosed, with 17,099 recorded deaths occurring between 1995 and 2018. Squamous cell carcinoma was the most common histological type, with 34,169 cases and 11,859 deaths. Over the study period, the cervical cancer incidence rate decreased by an average of 1.9% (95% CI: −2.3% to −1.6%) per year, with the APCs decreased in recent years (−0.5% [95% CI: −1.1 to 0.1%] in 2006–2018). Squamous cell carcinoma incidence trends closely paralleled overall cervical cancer patterns, but the incidence of squamous cell carcinoma in the distant stage increased significantly (1.1% [95% CI: 0.4 to 1.8%] in 1990–2018). From 1995 to 2018, the overall cervical cancer mortality rate decreased by 1.0% (95% CI: −1.2% to −0.8%) per year. But for distant-stage squamous cell carcinoma, the mortality rate increased by 1.2% (95% CI: 0.3 to 2.1%) per year.ConclusionFor cervical cancer cases diagnosed in the United States from 1975 to 2018, the overall incidence and mortality rates decreased significantly. However, there was an increase in the incidence and mortality of advanced-stage squamous cell carcinoma. These epidemiological patterns offer critical insights for refining cervical cancer screening protocols and developing targeted interventions for advanced-stage cases.

  19. Cancer data of United States of America

    • kaggle.com
    zip
    Updated Apr 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanisha1604 (2024). Cancer data of United States of America [Dataset]. https://www.kaggle.com/datasets/tanisha1604/cancer-data-of-united-states-of-america
    Explore at:
    zip(346754 bytes)Available download formats
    Dataset updated
    Apr 18, 2024
    Authors
    Tanisha1604
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    United States
    Description

    About Dataset

    The dataset contains 2 .csv files This file contains various demographic and health-related data for different regions. Here's a brief description of each column:

    File 1st

    • avganncount: Average number of cancer cases diagnosed annually.

    • avgdeathsperyear: Average number of deaths due to cancer per year.

    • target_deathrate: Target death rate due to cancer.

    • incidencerate: Incidence rate of cancer.

    • medincome: Median income in the region.

    • popest2015: Estimated population in 2015.

    • povertypercent: Percentage of population below the poverty line.

    • studypercap: Per capita number of cancer-related clinical trials conducted.

    • binnedinc: Binned median income.

    • medianage: Median age in the region.

    • pctprivatecoveragealone: Percentage of population covered by private health insurance alone.

    • pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.

    • pctpubliccoverage: Percentage of population covered by public health insurance.

    • pctpubliccoveragealone: Percentage of population covered by public health insurance only.

    • pctwhite: Percentage of White population.

    • pctblack: Percentage of Black population.

    • pctasian: Percentage of Asian population.

    • pctotherrace: Percentage of population belonging to other races.

    • pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.

    File 2nd

    This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:

    • statefips: The FIPS code representing the state.

    • countyfips: The FIPS code representing the county or census area within the state.

    • avghouseholdsize: The average household size in the region.

    • geography: The geographical location, typically represented as the county or census area name followed by the state name.

    Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.

  20. U

    United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact...

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female [Dataset]. https://www.ceicdata.com/en/united-states/health-statistics/us-mortality-from-cvd-cancer-diabetes-or-crd-between-exact-ages-30-and-70-female
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data was reported at 11.800 NA in 2016. This records an increase from the previous number of 11.600 NA for 2015. United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data is updated yearly, averaging 11.800 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 14.600 NA in 2000 and a record low of 11.600 NA in 2015. United States US: Mortality from CVD, Cancer, Diabetes or CRD between Exact Ages 30 and 70: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Mortality from CVD, cancer, diabetes or CRD is the percent of 30-year-old-people who would die before their 70th birthday from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease, assuming that s/he would experience current mortality rates at every age and s/he would not die from any other cause of death (e.g., injuries or HIV/AIDS).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of new cancer cases and deaths in the U.S. by gender 2025 [Dataset]. https://www.statista.com/statistics/280700/new-cancer-cases-and-deaths-in-the-us-by-gender/
Organization logo

Number of new cancer cases and deaths in the U.S. by gender 2025

Explore at:
Dataset updated
Feb 18, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2025
Area covered
United States
Description

In 2025, it was estimated that there would be over 972 thousand new cancer cases among women in the United States. This statistic illustrates the estimated number of new cancer cases and deaths in the United States for 2025, by gender.

Search
Clear search
Close search
Google apps
Main menu