100+ datasets found
  1. e

    North America Monthly Precipitation

    • climate.esri.ca
    • climat.esri.ca
    • +1more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Monthly Precipitation [Dataset]. https://climate.esri.ca/maps/5f1fa8a610024e55a0bddc66bf6ebd76
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  2. d

    Weather Stations Used to Compile the Mean Annual Precipitation Map for Idaho...

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idaho State Climate Services (2020). Weather Stations Used to Compile the Mean Annual Precipitation Map for Idaho [Dataset]. https://catalog.data.gov/dataset/weather-stations-used-to-compile-the-mean-annual-precipitation-map-for-idaho
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    Idaho State Climate Services
    Area covered
    Idaho
    Description

    This data set reflects National Weather Service (NWS) and National Resources Conservation Service (NRCS) stations for the state of Idaho. There are 213 stations in this data set and these are the stations used to compile the mean annual precipitation map for Idaho which was created by Myron Molnau.Source data for this web service can be downloaded from https://insideidaho.org/data/ago/ics/weatStns_id_ics.zip.Related data set: Precipitation for Idaho; Mean Annual (1961-90)

  3. f

    Annual Average Rainfall Total (mm)

    • data.apps.fao.org
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Annual Average Rainfall Total (mm) [Dataset]. https://data.apps.fao.org/map/catalog/static/search?keyword=rainfall
    Explore at:
    Dataset updated
    Sep 11, 2020
    Description

    This map is part of a series of global climate images produced by the Agrometeorology Group and based on data for mean monthly values of temperature, precipitation and cloudiness prepared in 1991 by R. Leemans and W. Cramer and published by the International Institute for Applied Systems Analysis (IIASA). For each of the weather stations used data have been assembled over a long time period - usually between 1961 and 1990 - and then averaged. Annual totals for rainfall were derived from the monthly values.

  4. s

    Mean Annual Precipitation

    • pacific-data.sprep.org
    • pacificdata.org
    • +1more
    pdf
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PNG Conservation and Environment Protection Authority (2025). Mean Annual Precipitation [Dataset]. https://pacific-data.sprep.org/dataset/mean-annual-precipitation
    Explore at:
    pdf(915400)Available download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    PNG Conservation and Environment Protection Authority
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Papua New Guinea, -208.24409209192 -5.9111168156317, -205.98662495613 -10.715018903822, -207.23115384579 -8.9111204618253, -215.87432026863 -8.4767177710071, -204.58927050233 -7.0808324753675, -212.94404447079 -9.4169824528947, -206.71875 -11.505862102605, -205.400390625 -2.9395305057008, -216.44527673721 -9.2901510207474, -210.52705228329 -8.6939820698063
    Description

    1km gridded Rainfall map - interpolation over DEM. Rainfall data scattered well except Western and Southern Highlands Provinces. With the Digicel Towers (mounted with rainfall instruments) network nation-wide. The Rainfall Map can be improved.

  5. D

    Isohyets of annual rainfall map of Africa

    • dataverse.ird.fr
    application/dbf +5
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gil Mahé; Gil Mahé; Nathalie Rouché; Claudine Dieulin; Claudine Dieulin; Jean-François Boyer; Jean-François Boyer; Ibrahim Boubacar; Ibrahim Boubacar; Jean-Emmanuel Paturel; Jean-Emmanuel Paturel; Nathalie Rouché (2025). Isohyets of annual rainfall map of Africa [Dataset]. http://doi.org/10.23708/BAR411
    Explore at:
    application/dbf(7870), application/shp(128116), application/shx(372), application/prj(163), application/dbf(1098), application/shp(238140), application/sbx(164), application/dbf(8092), application/shx(380), application/sbn(540), application/shx(420), application/shp(125008)Available download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    DataSuds
    Authors
    Gil Mahé; Gil Mahé; Nathalie Rouché; Claudine Dieulin; Claudine Dieulin; Jean-François Boyer; Jean-François Boyer; Ibrahim Boubacar; Ibrahim Boubacar; Jean-Emmanuel Paturel; Jean-Emmanuel Paturel; Nathalie Rouché
    License

    https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411https://dataverse.ird.fr/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.23708/BAR411

    Time period covered
    Jan 1, 1940 - Dec 31, 1999
    Area covered
    Africa
    Description

    Result of a long experience in cooperation with the African meteorological departments and of the management of data bases, this map displays the annual rainfalls over a 60-year period. Maps representing rainfall over the whole African continent are rare, and a map dealing with observed rainfall over such a long period has never been released. Measurements of almost 6,000 raingauges were used for the calculation of mean values. This dataset contains in shapefiles format ArcGis : 1-isohyets of the annual Rainfall Map of Africa 2-isohyets that show the shifting of the isohyetal lines on the small map . Grids of rainfall at a step of half square degree and at a monthly time step are provided on the website of SIEREM (Environmental Information System for Water Resources and Modelling). Fruit d'une longue expérience de coopération avec les services climatologiques africains et de gestion de bases de données, cette carte affiche les pluies annuelles sur une période de 60 ans. Rares sont les cartes représentant les pluies observées sur la totalité du continent africain, et inédite une carte traitant de ce sujet sur une période aussi longue. Les mesures de près de 6 000 postes ont été utilisées pour le calcul des valeurs moyennes. Tous les fichiers de données sont au format ArcGIS (shapefiles) et contiennent : 1- Isohyètes de la carte des pluies annuelles en Afrique 2- Isohyètes qui montrent le déplacement des isohyètes sur la période Des grilles de pluies au pas du demi-degré carré et au pas de temps mensuel sont mises à disposition sur le site de SIEREM (Système d'informations environnementales pour les ressources en eau et leur modélisation).

  6. Annual precipitation in the United States 2024, by state

    • statista.com
    • ai-chatbox.pro
    Updated Feb 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual precipitation in the United States 2024, by state [Dataset]. https://www.statista.com/statistics/1101518/annual-precipitation-by-us-state/
    Explore at:
    Dataset updated
    Feb 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    In 2024, Louisiana recorded 71.25 inches of precipitation. This was the highest precipitation within the 48 contiguous U.S. states that year. On the other hand, Nevada was the driest state, with only 9.53 inches of precipitation recorded. Precipitation across the United States Not only did Louisiana record the largest precipitation volume in 2024, but it also registered the highest precipitation anomaly that year, around 14.36 inches above the 1901-2000 annual average. In fact, over the last decade, rainfall across the United States was generally higher than the average recorded for the 20th century. Meanwhile, the driest states were located in the country's southwestern region, an area which – according to experts – will become even drier and warmer in the future. How does global warming affect precipitation patterns? Rising temperatures on Earth lead to increased evaporation which – ultimately – results in more precipitation. Since 1900, the volume of precipitation in the United States has increased at an average rate of 0.20 inches per decade. Nevertheless, the effects of climate change on precipitation can vary depending on the location. For instance, climate change can alter wind patterns and ocean currents, causing certain areas to experience reduced precipitation. Furthermore, even if precipitation increases, it does not necessarily increase the water availability for human consumption, which might eventually lead to drought conditions.

  7. a

    Africa Ag Atlas - Average Annual Rainfall

    • africageoportal.com
    • hub.arcgis.com
    • +1more
    Updated Sep 8, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CGIAR - Consortium for Spatial Information (CGIAR-CSI) (2014). Africa Ag Atlas - Average Annual Rainfall [Dataset]. https://www.africageoportal.com/maps/bf2c015367f7453bb1d1306d0094e1a2
    Explore at:
    Dataset updated
    Sep 8, 2014
    Dataset authored and provided by
    CGIAR - Consortium for Spatial Information (CGIAR-CSI)
    Area covered
    Description

    Average Annual Rainfall, Africa, 1960-90, millimeters per year. Data from CCAFS/ILRI. Map published in Atlas of African Agriculture Research & Development (K. Sebastian (Ed.) 2014). p.38-39 Rainfall and Rainfall Variability. Contributor: Philip Thornton.For more information: http://agatlas.org/contents/rainfall-and-rainfall-variability/

  8. Historical and future temperature trends (Map Service)

    • catalog.data.gov
    • gimi9.com
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future temperature trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-temperature-trends-map-service-e00ae
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  9. a

    Average Annual Precipitation

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Average Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/51a15d5dd0054155bd2cd11001a3f1b3
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    Area covered
    Description

    Water is an essential ingredient to life on Earth. In its three phases (solid, liquid, and gas), water continuously cycles within the Earth and atmosphere to create significant parts of our planet’s climate system, such as clouds, rivers, vegetation, oceans, and glaciers. Precipitation is a part of the water cycle, where water particles fall from clouds in the form of rain, sleet, snow, ice crystals, or hail. So how does precipitation form? As water on Earth’s surface evaporates it changes from liquid to gas and rises into the atmosphere. Because air cools as altitude increases, the vapor rises to a point in the atmosphere where it cools enough to condense into liquid water or freeze into ice, which forms a cloud. Water vapor continues to condense and stick to other water droplets in the cloud until the weight of the accumulated water becomes too heavy for the cloud to hold. If the air in the cloud is above freezing (0 degrees Celsius or 32 degrees Fahrenheit), the water falls to the Earth as rain. If the air in the cloud is below freezing, ice crystals form and it snows if the air between the cloud and the ground stays below 0 degrees Celsius (32 degrees Fahrenheit). If a snowflake falls through a warmer part of a cloud, it can get coated in water, then refrozen multiple times as it circulates around the cloud. This forms heavy pellets of ice, called hail, that can fall from the sky at speeds estimated between 14 and 116 kmph (9 and 72 mph) depending on its size. A hailstone can range from the size of a pea (approximately 0.6 cm or 0.25 inches) to a golf ball (approximately 4.5 cm or 1.75 inches), and sometimes even reach the size of a softball (approximately 10 cm or 4 inches).Precipitation doesn’t fall in the same amounts throughout the world. The presence of mountains, global winds, and the unequal distribution of land and sea cause some parts of the world to receive greater amounts of precipitation compared with others. Areas with rising moist air generally indicate regions with high precipitation. According to the Köppen Climate Classification System, tropical wet and tropical monsoon climates receive annual precipitation of 150 cm (59 inches) or greater. Tropical wet regions, where rain occurs year-round, are found near the equator in central Africa, the Amazon rainforest, and southern India. Monsoons are storms with large patterns of wind and heavy rain that can span over a continent. Tropical monsoon climates are located mainly in Southeast Asia and areas around the Pacific Ocean, where annual rainfall is equal to or greater than areas with a tropical wet climate. Here, intense monsoon rains fall during the three hottest months of the year, which are usually between June and October. Snow and ice, which are most common in high altitudes and latitudes, cover most of the Earth’s polar regions. High altitude regions of the Andes, Tibetan Plateau, and the Rocky Mountains maintain some amount of snow cover year-round.Over the next century, it is predicted warming global temperatures will increase the temperature of the ocean and increase the speed of the water cycle. With a quicker rate of evaporation, there will be more water in the atmosphere, allowing clouds to produce heavier precipitation and more intense storms. Although storms would be more intense in wetter regions, increased evaporation could also lead to extreme drought in drier areas of the world. This would greatly affect farmers who grow crops in dry locations like Southern California or Kansas.This map layer shows Earth's mean precipitation (measured in centimeters per month) averaged from 1981 to 2012 as calculated but the Copernicus Climate Change Service. The data was collected from the Copernicus satellite and validated with precipitation measurements from weather stations. Scientists averaged all of the amounts (originally collected in meters) occurring each month together, and they calculated the average of each month over 30 years to create this map.

  10. G

    Mean Annual Total Precipitation

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Mean Annual Total Precipitation [Dataset]. https://open.canada.ca/data/en/dataset/53377276-6db5-5ad6-82e6-dc9b7c70a321
    Explore at:
    jpg, pdfAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 3rd Edition (1957) of the Atlas of Canada is a plate that shows two maps for the annual total precipitation. Annual precipitation is defined as the sum of rainfall and the assumed water equivalent of snowfall for a given year. A specific gravity of 0.1 for freshly fallen snow is used, which means that ten inches (25.4 cm) of freshly fallen snow is assumed to be equal to one inch (2.54 cm) of rain. The mean annual total precipitation and snowfall maps on this plate are primarily based on thirty-year data during the period 1921 to 1950 inclusive.

  11. c

    Caribbean Monthly Precipitation

    • caribbeangeoportal.com
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Monthly Precipitation [Dataset]. https://www.caribbeangeoportal.com/maps/0cd4f23e672143b1b135f7cebc0858f2
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    Total monthly precipitation modeled globally by NASA . The map shows monthly precipitation for the period of 2000 to the present, focused on the Caribbean.Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available.This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.

  12. G

    Depth, duration, and frequency of point rainfall - 10-minute rainfall for...

    • open.canada.ca
    jpg, pdf
    Updated Feb 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Depth, duration, and frequency of point rainfall - 10-minute rainfall for 2-year, 5-year, 10-year and 25-year return periods. [Dataset]. https://open.canada.ca/data/en/dataset/b785f57e-6bb7-5706-b0b9-339b8095d6db
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Feb 22, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The plate contains four maps of 10 minute rainfalls (in millimetres) for a 2 year return period, a 5 year return period, a 10 year return period and a 25 year return period. Each map has a detailed inset of the Vancouver area. These four maps were not analyzed for the mountainous parts of Canada in British Columbia and the Yukon because of the limited number of stations, the non-representative nature of the valley stations and the variability of precipitation owing to the orographic effects. From the incomplete data, it is impossible to draw accurate isolines of short duration rainfall amounts on maps of national scale. Point values for all stations west of the Rocky Mountain range and in the Yukon have been plotted for durations of less than 24 hours. For the Vancouver metropolitan area, recording rain gauges have been in operation for several years. For some of these stations point rainfall data have been plotted on inset maps. The density of climatological stations varies widely as does population density. In general, the accuracy of the analysis increases with station density. North of latitude 55 degrees North, there are only five stations. Therefore, the isoline analyses represent extrapolations beyond the station values. Whenever sufficient data were available for interpretation, isolines were drawn as solid lines. The scale of the map used for Canada dictates the use of an isoline interval of 4 millimetres.

  13. Historical annual precipitation (Alaska) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual precipitation (Alaska) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-alaska-image-service-d083e
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  14. a

    Map Document of Observed Average Precipitation Change (1900-2013)

    • hub.arcgis.com
    • maps.sogdatacentre.ca
    • +1more
    Updated Nov 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific Salmon Foundation (2021). Map Document of Observed Average Precipitation Change (1900-2013) [Dataset]. https://hub.arcgis.com/documents/adcf357ef9b34b569431027189b3ff85
    Explore at:
    Dataset updated
    Nov 3, 2021
    Dataset authored and provided by
    Pacific Salmon Foundation
    Description

    This non-interactive map displays change in annual average precipitation per century in British Columbia from 1900 to 2013. The map is a replication of visuals available through the Province of BC website found here. Full credit is given to the Pacific Climate Impacts Consortium, Environment Canada, and Province of BC for their involvement in the creation of visuals and data.British Columbia Ministry of Environment. (2015). Indicators of Climate Change for British Columbia: 2016 Update. Ministry of Environment, British Columbia, Canada.

  15. H

    Annual Rainfall (mm)

    • opendata.hawaii.gov
    • geoportal.hawaii.gov
    • +4more
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Planning (2025). Annual Rainfall (mm) [Dataset]. https://opendata.hawaii.gov/dataset/annual-rainfall-mm
    Explore at:
    pdf, arcgis geoservices rest api, kml, csv, ogc wfs, html, ogc wms, zip, geojsonAvailable download formats
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Hawaii Statewide GIS Program
    Authors
    Office of Planning
    Description

    [Metadata] Mean Annual Rainfall Isohyets in Millimeters for the Islands of Hawai‘i, Kaho‘olawe, Kaua‘i, Lāna‘i, Maui, Moloka‘i and O‘ahu. Source: 2011 Rainfall Atlas of Hawaii, https://www.hawaii.edu/climate-data-portal/rainfall-atlas. Note that Moloka‘I data/maps were updated in 2014. Please see Rainfall Atlas final report appendix for full method details: https://www.hawaii.edu/climate-data-portal/rainfall-atlas. Statewide GIS program staff downloaded data from UH Geography Department, Rainfall Atlas of Hawaii, February, 2019. Annual and monthly isohyets of mean rainfall were available for download. The statewide GIS program makes available only the annual layer. Both the monthly layers and the original annual layer are available from the Rainfall Atlas of Hawaii website, referenced above. Note: Contour attribute value represents the amount of annual rainfall, in millimeters, for that line/isohyet. For additional information, please see metadata at https://files.hawaii.gov/dbedt/op/gis/data/isohyets.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.

  16. Average rainfall per year in selected cities in France 1981-2010

    • statista.com
    Updated Aug 9, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Average rainfall per year in selected cities in France 1981-2010 [Dataset]. https://www.statista.com/statistics/1090126/annual-rainfall-cities-france/
    Explore at:
    Dataset updated
    Aug 9, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    France
    Description

    This graph shows the average annual rainfall in France from 1981 to 2010, by city, in millimetres. We can observe, that during this period, Bordeaux accumulated a precipation averaging nearly one metre each year.

  17. G

    Average Monthly Precipitation

    • open.canada.ca
    • ouvert.canada.ca
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Average Monthly Precipitation [Dataset]. https://open.canada.ca/data/en/dataset/84dc5329-c33a-50c8-8341-738f25541997
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Natural Resources Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 4th Edition (1974) of the Atlas of Canada is a collection of six maps. Each map shows the average monthly precipitation for April, May, June, July, August and September.

  18. f

    Global map of monthly coefficient of variation of precipitation

    • data.apps.fao.org
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Global map of monthly coefficient of variation of precipitation [Dataset]. https://data.apps.fao.org/map/catalog/static/search?keyword=rainfall
    Explore at:
    Dataset updated
    Sep 11, 2020
    Description

    Grids with monthly values of coefficient of variation of precipitation for the period 1961-1990, at 5 arc min. Based on: New, M., Lister, D., Hulme, M. and Makin, I., 2002: A high-resolution data set of surface climate over global land areas. Climate Research 21:1-25

  19. Monthly Precipitation

    • africageoportal.com
    • climat.esri.ca
    • +9more
    Updated Jun 24, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). Monthly Precipitation [Dataset]. https://www.africageoportal.com/maps/01fa55f171eb48a7ac9c460c0339e6c1
    Explore at:
    Dataset updated
    Jun 24, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Precipitation is water released from clouds in the form of rain, sleet, snow, or hail. It is the primary source of recharge to the planet's fresh water supplies. This map contains a historical record showing the volume of precipitation that fell during each month from March 2000 to the present. Snow and hail are reported in terms of snow water equivalent - the amount of water that will be produced when they melt. Dataset SummaryThe GLDAS Precipitation layer is a time-enabled image service that shows average monthly precipitation from 2000 to the present, measured in millimeters. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.Time: This is a time-enabled layer. It shows the total evaporative loss during the map's time extent, or if time animation is disabled, a time range can be set using the layer's multidimensional settings. The map shows the sum of all months in the time extent. Minimum temporal resolution is one month; maximum is one year.Variables: This layer has two variables: rainfall and snowfall. By default the two are summed, but you can view either by itself using the multidimensional filter. You must disable time animation on the layer before using its multidimensional filter.Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.This layer has query, identify, and export image services available.This layer is part of a larger collection of earth observation maps that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the earth observation layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about earth observations layers and the Living Atlas of the World. Follow the Living Atlas on GeoNet.

  20. T

    Iraq Average Precipitation

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Iraq Average Precipitation [Dataset]. https://tradingeconomics.com/iraq/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    Iraq
    Description

    Precipitation in Iraq increased to 191.01 mm in 2023 from 164.88 mm in 2022. This dataset includes a chart with historical data for Iraq Average Precipitation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CECAtlas (2023). North America Monthly Precipitation [Dataset]. https://climate.esri.ca/maps/5f1fa8a610024e55a0bddc66bf6ebd76

North America Monthly Precipitation

Explore at:
Dataset updated
Apr 19, 2023
Dataset authored and provided by
CECAtlas
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to the standard Lambert Azimuthal Equal Area projection used for the North American Environmental Atlas. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

Search
Clear search
Close search
Google apps
Main menu