800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global GIS data collector market is experiencing robust growth, driven by increasing adoption of precision agriculture, expanding infrastructure development projects, and the rising demand for accurate geospatial data across various industries. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $4.2 billion by 2033. Key drivers include the increasing availability of affordable and high-precision GPS technology, coupled with advancements in data processing and cloud-based solutions. The integration of GIS data collectors with other technologies, such as drones and IoT sensors, is further fueling market expansion. The demand for high-precision GIS data collectors is particularly strong in sectors like surveying, mapping, and construction, where accuracy is paramount. While the market faces challenges such as high initial investment costs and the need for specialized expertise, the overall growth trajectory remains positive. The market is segmented by application (agriculture, industrial, forestry, and others) and by type (general precision and high precision). North America and Europe currently hold significant market shares, but the Asia-Pacific region is anticipated to experience rapid growth in the coming years due to substantial infrastructure development and increasing government investments in geospatial technologies. The competitive landscape is characterized by both established players like Trimble, Garmin, and Hexagon (Leica Geosystems) and emerging companies offering innovative solutions. These companies are constantly innovating, integrating advanced technologies like AI and machine learning to enhance data collection and analysis capabilities. This competition is driving down prices and improving product quality, benefiting end-users. The increasing use of mobile GIS and cloud-based data management solutions is also transforming the industry, making data collection and analysis more accessible and efficient. Future growth will be largely influenced by the advancement of 5G networks, enabling faster data transmission and real-time applications, and the increasing adoption of automation and AI in data processing workflows. Furthermore, government regulations promoting the use of accurate geospatial data for sustainable development and environmental monitoring are creating new opportunities for the market’s expansion.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.
Cartographer and GIS expert. Proven track of commercial experience. Since 2001, the leader of teams specializing in designing and maintaining spatial databases for navigation systems and modeling topographical data. Knowledge of Polish Spatial Data Infrastructure. Polish National Topographical Database model designer. Directly involved in the design and implementation of the Spatial Data Infrastructure in Poland. Vice-dean for Science and Development at the Faculty of Geodesy and Cartography at Warsaw University of Technology (2012-2016). Vice-Dean for Development and Cooperation with the Economy at the Faculty of Geodesy and Cartography at Warsaw University of Technology (2020-2024). Originator and project manager of the creation of the Center for Geospatial Analysis and Satellite Computing (CENAGIS). Advisor (expert) to the Head Office of Geodesy and Cartography in Poland (from 1999) in the SDI area. The initiator of the establishment of the Laboratory of Mobile Cartography and author of the teaching program in the field of Geoinformatics at Warsaw University of Technology. More than ten years of experience in managing the work of GIS department and GIS Database Operation Department (Director) in the capital group of PPWK/Mobile Internet Technology (joint-stock company) (among many tasks, several years of cooperation with Google Company - delivering of spatial dataset for the Polish territory). Membership of professional bodies (selected): • The Polish National Committe for International Cartographic Association (from 2004) • The Association of Polish Cartographers (from 1999, from 2013 Member of the Board) • The Geoinformatics Commision of the Polish Academy of Arts and Sciences (from 2016) • The Committee on Geodesy of the Polish Academy of Sciences, The Chair of Geoinformation Section (from 2016) • The Scientific Council of Polish Polar Consortium (2014-2022) • The Chairman of The Working Group "Smart networks and geoinformation technologies" (The Polish Smart Specialization) at the Ministry of Development (2015-2022) • V-Ce Chairman Of National Council For Spatial Information In Poland (From 2018) (inter-ministeral committee)
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The market for Geographic Information Systems (GIS) solutions is projected to reach a staggering XXX million by 2033, growing at a remarkable CAGR of XX% from 2025 to 2033. This growth is driven by the increasing adoption of GIS technology across various industries, including transportation, AEC, telecommunications, agriculture, and entertainment. GIS solutions provide valuable insights by overlaying data onto geographic maps, helping businesses make informed decisions, optimize operations, and enhance customer experiences. Moreover, the growing awareness of sustainability and the need for environmental conservation is further fueling the demand for GIS solutions in sectors such as utilities, environmental consulting, and urban planning. The GIS market is segmented based on type (software, service), application, and region. North America dominates the market, followed by Europe and Asia Pacific. Key players in the GIS industry include Esri, Pro GIS Solutions, GBS, Fugro, DataVoice, Pontech, ABPmer, VertiGIS, Tata Communications, GIS Solutions, Inc, CGIS Solutions, and Spectus. The market is characterized by intense competition, ongoing advancements in technology, and the emergence of specialized GIS solutions. As businesses recognize the transformative potential of GIS technology, the market is expected to continue to experience robust growth in the coming years.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.
Prior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global spatial analysis software market is experiencing robust growth, driven by increasing adoption across diverse sectors. The market, currently valued at approximately $5 billion (estimated based on typical market sizes for similar software segments), is projected to witness a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This expansion is fueled by several key factors. The rising availability of geospatial data, coupled with advancements in cloud computing and artificial intelligence (AI), is enabling more sophisticated and accessible spatial analysis capabilities. Industries such as urban planning, environmental management, logistics, and retail are leveraging these advancements for optimized resource allocation, improved decision-making, and enhanced operational efficiency. The integration of spatial analysis tools into Geographic Information Systems (GIS) platforms further enhances market penetration, streamlining workflows and facilitating comprehensive data analysis. Demand for predictive modeling and location intelligence solutions is also a major growth driver, particularly among businesses seeking to understand customer behavior, optimize supply chains, and mitigate risks. However, market growth is not without its challenges. The high cost of implementation and maintenance of advanced spatial analysis software can be a barrier to entry for smaller organizations. Furthermore, the complexity of these tools requires skilled professionals, leading to a shortage of trained personnel in some regions. Despite these restraints, the long-term outlook for the spatial analysis software market remains positive, with continued innovation and wider adoption expected across various applications and geographic locations. Specific segments like those focused on 3D spatial analysis and real-time data processing are anticipated to experience particularly strong growth in the coming years. The increasing prevalence of big data and the need for effective data visualization are key elements underpinning this dynamic market.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The global Geographic Information System (GIS) Tools market, valued at $2979.7 million in 2025, is projected to experience robust growth, driven by increasing adoption across various sectors. The Compound Annual Growth Rate (CAGR) of 5.5% from 2025 to 2033 indicates a substantial market expansion. Key drivers include the rising need for spatial data analysis in urban planning, environmental management, and infrastructure development. The increasing availability of cloud-based GIS solutions, offering enhanced scalability and accessibility, further fuels market growth. Furthermore, advancements in data visualization and analytics capabilities within GIS tools are attracting a wider range of users. Segmentation reveals a significant market share held by large enterprises, reflecting the considerable resources and data management needs of these organizations. Cloud-based solutions dominate the market, reflecting the shift towards flexible and cost-effective technology deployments. While the market faces some restraints like the high initial investment costs associated with implementing GIS systems and the requirement for skilled personnel, the overall market outlook remains positive due to the expanding applications and technological advancements in the field. North America currently holds a significant market share, driven by high technological adoption rates and the presence of major GIS solution providers. However, the Asia-Pacific region is expected to witness substantial growth in the coming years due to increasing urbanization and infrastructure development initiatives in rapidly growing economies like China and India. The market's growth trajectory is also influenced by the evolving needs of various industry verticals. The application of GIS tools in precision agriculture, disaster management, and supply chain optimization is creating new opportunities for market expansion. The integration of GIS with other technologies, such as IoT and AI, is leading to the development of more sophisticated and insightful applications. This convergence is enabling real-time data analysis and predictive modeling, offering businesses and governments valuable insights for informed decision-making. The competitive landscape is characterized by a mix of established players and emerging startups, driving innovation and fostering competition, ultimately benefiting end-users with a diverse range of solutions and pricing models. The ongoing development of open-source GIS software is also creating a more accessible and collaborative environment within the ecosystem.
This layer represents the surface condition rating per trail system collected while riding the data bike along trails for the Massachusetts Trail Surface Condition Study in 2022. The surface condition rating is calculated by a weighted average of the 10-meter interval ratings along a trail's length with rougher sections weighted more. This layer provides both a raw average and a weighted average. Surface condition data was collected via the rRuf application, which was running on an iPhone mounted on the bike's handlebars.
Links to recordings of the Integrated Services Program and 9-1-1 & Geospatial Services Bureau webinar series, including NG9-1-1 GIS topics such as: data preparation; data provisioning and maintenance; boundary best practices; and extract, transform, and load (ETL). Offerings include:Topic: Virginia Next Generation 9-1-1 Dashboard and Resources Update Description: Virginia recently updated the NG9-1-1 Dashboard with some new tabs and information sources and continues to develop new resources to assist the GIS data work. This webinar provides an overview of changes, a demonstration of new functionality, and a guide to finding and using new resources that will benefit Virginia public safety and GIS personnel with roles in their NG9-1-1 projects. Wednesday 16 June 2021. Recording available at: https://vimeo.com/566133775Topic: Emergency Service Boundary GIS Data Layers and Functions in your NG9-1-1 PSAP Description: Law, Fire, and Emergency Medical Service (EMS) Emergency Service Boundary (ESB) polygons are required elements of the NENA NG9-1-1 GIS data model stack that indicate which agency is responsible for primary response. While this requirement must be met in your Virginia NG9-1-1 deployment with AT&T and Intrado, there are quite a few ways you could choose to implement these polygons. PSAPs and their GIS support must work together to understand how this information will come into a NG9-1-1 i3 PSAP and how it will replace traditional ESN information in order to make good choices while implementing these layers. This webinar discusses:the function of ESNs in your legacy 9-1-1 environment, the role of ESBs in NG9-1-1, and how ESB information appears in your NG9-1-1 PSAP. Wednesday, 22 July 2020. Recording available at: https://vimeo.com/441073056#t=360sTopic: "The GIS Folks Handle That": What PSAP Professionals Need to Know about the GIS Project Phase of Next Generation 9-1-1 DeploymentDescription: Next Generation 9-1-1 (NG9-1-1) brings together the worlds of emergency communication and spatial data and mapping. While it may be tempting for PSAPs to outsource cares and concerns about road centerlines and GIS data provisioning to 'the GIS folks', GIS staff are crucial to the future of emergency call routing and location validation. Data required by NG9-1-1 usually builds on data that GIS staff already know and use for other purposes, so the transition requires them to learn more about PSAP operations and uses of core data. The goal of this webinar is to help the PSAP and GIS worlds come together by explaining the role of the GIS Project in the Virginia NG9-1-1 Deployment Steps, exploring how GIS professionals view NG9-1-1 deployment as a project, and fostering a mutual understanding of how GIS will drive NG9-1-1. 29 January 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225474Topic: Getting Your GIS Data from Here to There: Processes and Best Practices for Extract, Transform and Load (ETL) Description: During the fall of 2019, VITA-ISP staff delivered workshops on "Tools and Techniques for Managing the Growing Role of GIS in Enterprise Software." This session presents information from the workshops related to the process of extracting, transforming, and loading data (ETL), best practices for ETL, and methods for data schema comparison and field mapping as a webinar. These techniques and skills assist GIS staff with their growing role in Next Generation 9-1-1 but also apply to many other projects involving the integration and maintenance of GIS data. 19 February 2020. Recording available at: https://vimeo.com/showcase/9791882/video/761225007Topic: NG9-1-1 GIS Data Provisioning and MaintenanceDescription: VITA ISP pleased to announce an upcoming webinar about the NG9-1-1 GIS Data Provisioning and Maintenance document provided by Judy Doldorf, GISP with the Fairfax County Department of Information Technology and RAC member. This document was developed by members of the NG9-1-1 GIS workgroup within the VITA Regional Advisory Council (RAC) and is intended to provide guidance to local GIS and PSAP authorities on the GIS datasets and associated GIS to MSAG/ALI validation and synchronization required for NG9-1-1 services. The document also provides guidance on geospatial call routing readiness and the short- and long-term GIS data maintenance workflow procedures. In addition, some perspective and insight from the Fairfax County experience in GIS data preparation for the AT&T and West solution will be discussed in this webinar. 31 July 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224774Topic: NG9-1-1 Deployment DashboardDescription: I invite you to join us for a webinar that will provide an overview of our NG9-1-1 Deployment Dashboard and information about other online ISP resources. The ISP website has been long criticized for being difficult to use and find information. The addition of the Dashboard and other changes to the website are our attempt to address some of these concerns and provide an easier way to find information especially as we undertake NG9-1-1 deployment. The Dashboard includes a status map of all Virginia PSAPs as it relates to the deployment of NG9-1-1, including the total amount of funding requested by the localities and awards approved by the 9-1-1 Services Board. During this webinar, Lyle Hornbaker, Regional Coordinator for Region 5, will navigate through the dashboard and provide tips on how to more effectively utilize the ISP website. 12 June 2019. Recording not currently available. Please see the Virginia Next Generation 9-1-1 Dashboard and Resources Update webinar recording from 16 June 2021. Topic: PSAP Boundary Development Tools and Process RecommendationDescription: This webinar will be presented by Geospatial Program Manager Matt Gerike and VGIN Coordinator Joe Sewash. With the release of the PSAP boundary development tools and PSAP boundary segment compilation guidelines on the VGIN Clearinghouse in March, this webinar demonstrates the development tools, explains the process model, and discusses methods, tools, and resources available for you as you work to complete PSAP boundary segments with your neighbors. 15 May 2019. Recording available at: https://www.youtube.com/watch?v=kI-1DkUQF9Q&feature=youtu.beTopic: NG9-1-1 Data Preparation - Utilizing VITA's GIS Data Report Card ToolDescription: This webinar, presented by VGIN Coordinator Joe Sewash, Geospatial Program Manager Matt Gerike, and Geospatial Analyst Kenny Brevard will provide an overview of the first version of the tools that were released on March 25, 2019. These tools will allow localities to validate their GIS data against the report card rules, the MSAG and ALI checks used in previous report cards, and the analysis listed in the NG9-1-1 migration proposal document. We will also discuss the purpose of the tools, input requirements, initial configuration, how to run them, and how to make sense of your results. 10 April 2019. Recording available at: https://vimeo.com/showcase/9791882/video/761224495Topic: NG9-1-1 PSAP Boundary Best Practice WebinarDescription: During the months of November and December, VITA ISP staff hosted regional training sessions about best practices for PSAP boundaries as they relate to NG9-1-1. These sessions were well attended and very interactive, therefore we feel the need to do a recap and allow those that may have missed the training to attend a makeup session. 30 January 2019. Recording not currently available. Please see the PSAP Boundary Development Tools and Process Recommendation webinar recording from 15 May 2019.Topic: NG9-1-1 GIS Overview for ContractorsDescription: The Commonwealth of Virginia has started its migration to next generation 9-1-1 (NG9-1-1). This migration means that there will be a much greater reliance on geographic information (GIS) to locate and route 9-1-1 calls. VITA ISP has conducted an assessment of current local GIS data and provided each locality with a report. Some of the data from this report has also been included in the localities migration proposal, which identifies what data issues need to be resolved before the locality can migrate to NG9-1-1. Several localities in Virginia utilize a contractor to maintain their GIS data. This webinar is intended for those contractors to review the data in the report, what is included in the migration proposal and how they may be called on to assist the localities they serve. It will still ultimately be up to each locality to determine whether they engage a contractor for assistance, but it is important for the contractor community to understand what is happening and have an opportunity to ask questions about the intent and goals. This webinar will provide such an opportunity. 22 August 2018. Recording not currently available. Please contact us at NG911GIS@vdem.virginia.gov if you are interested in this content.
Table from the American Community Survey (ACS) 5-year series on household types and population related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B11003 Family Type by Presence and Age of Own Children under 18 Years, B11005 Households by Presence of People Under 18 Years by Household Type, B11007 Households by Presence of People 65 Years and Over by Household Type, B11001 Household Type (Including Living Alone), B11002 Household Type by Relatives and Nonrelatives for Population in Households, B25003 Tenure, B25008 Total Population in Occupied Housing Units by Tenure, B09019 Household Type (Including Living Alone) by Relationship. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
About this itemInteractive web map showcasing development projects in Burnsville. Allows community members to learn about proposed, approved, under construction, and recently completed projects in the City. Built with ArcGIS Experience Builder, this app should work seamlessly across device types and provides users with a simple intuitive interface to explore what's building in Burnsville. This Experience Builder app recently replaced an outdated Development Project Story Map that has been one of the City's most visited GIS web apps with almost 18,000 views over the last four years. Author/ContributorMatt TaranOrganizationCity of BurnsvilleOrg Websitewww.burnsvillemn.gov
Table from the American Community Survey (ACS) 5-year series on income and earning related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B19025 Aggregate Household Income, B19013 Median Household Income, B19001 Household Income, B19113 Median Family Household Income, B19101 Family Household Income, B19202 Median Nonfamily Household Income, B19201 Nonfamily Household Income, B19301 Per Capita Income/B19313 Aggregate Income/B01001 Sex by Age, C24010 Sex by Occupation of the Civilian Employed Population 16 years and Over, B20017 Median Earnings by Sex by Work Experience for the Population 16 years and over with Earnings, B20001 Sex by Earnings for the Population 16 years and over with Earnings. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.
In this asynchronous session, you will use some of the free GIS tools from the Teach With GIS website, created and maintained by the Esri UK education team. All of these tools are free to use and accessible as websites from laptops, tablets and mobile devices. We recommend that you view them on a laptop or tablet if possible, to give you plenty of screen space to see every detail. They do not require any logins or subscriptions. We want you to experience using modern, online GIS tools from the perspective of a student before you begin to create your own tools, maps, and lessons. We have chosen a range of tools that let you experience GIS as a tool to examine physical and human geography, and to compare and contrast over space and time.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
eXtension Foundation, the University of New Hampshire, and Virginia Tech have developed a mapping and data exploration tool to assist Cooperative Extension staff and administrators in making strategic planning and programming decisions. The tool, called the National Extension Web-mapping Tool (or NEWT), is the key in efforts to make spatial data available within cooperative extension system. NEWT requires no GIS experience to use. NEWT provides access for CES staff and administrators to relevant spatial data at a variety of scales (national, state, county) in useful formats (maps, tables, graphs), all without the need for any experience or technical skills in Geographic Information System (GIS) software. By providing consistent access to relevant spatial data throughout the country in a format useful to CES staff and administrators, NEWT represents a significant advancement for the use of spatial technology in CES. Users of the site will be able to discover the data layers which are of most interest to them by making simple, guided choices about topics related to their work. Once the relevant data layers have been chosen, a mapping interface will allow the exploration of spatial relationships and the creation and export of maps. Extension areas to filter searches include 4-H Youth & Family, Agriculture, Business, Community, Food & Health, and Natural Resources. Users will also be able to explore data by viewing data tables and graphs. This Beta release is open for public use and feedback. Resources in this dataset:Resource Title: Website Pointer to NEWT National Extension Web-mapping Tool Beta. File Name: Web Page, url: https://www.mapasyst.org/newt/ The site leads the user through the process of selecting the data in which they would be most interested, then provides a variety of ways for the user to explore the data (maps, graphs, tables).
To use browser translation, open each application in a new window here: All Pet-Friendly Resources; Veterinary Clinics; Pet-Friendly Parks; Pet-Friendly Dining
GIS In Telecom Sector Market Size 2025-2029
The GIS in telecom sector market size is forecast to increase by USD 2.35 billion at a CAGR of 15.7% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing adoption of Geographic Information Systems (GIS) for capacity planning in the telecommunications industry. GIS technology enables telecom companies to optimize network infrastructure, manage resources efficiently, and improve service delivery. Telecommunication assets and network management systems require GIS integration for efficient asset management and network slicing. However, challenges persist in this market. A communication gap between developers and end-users poses a significant obstacle.
Companies seeking to capitalize on opportunities in the market must focus on addressing these challenges, while also staying abreast of technological advancements and market trends. Effective collaboration between developers and end-users, coupled with strategic investments, will be essential for success in this dynamic market. Telecom companies must bridge this divide to ensure the development of user-friendly and effective GIS solutions. Network densification and virtualization platforms are key trends, allowing for efficient spectrum management and data monetization. Additionally, the implementation of GIS in the telecom sector requires substantial investment in technology and infrastructure, which may deter smaller players from entering the market.
What will be the Size of the GIS In Telecom Sector Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the dynamic telecom sector, GIS technology plays a pivotal role in customer analysis, network planning, and infrastructure development. Customer experiences are enhanced through location-based services and real-time data analysis, enabling telecom companies to tailor offerings and improve service quality. Network simulation and capacity planning are crucial for network evolution, with machine learning and AI integration facilitating network optimization and compliance with industry standards.
IOT connectivity and network analytics platforms offer valuable insights for smart city infrastructure development, with 3D data analysis and network outage analysis ensuring network resilience. Telecom industry partnerships foster innovation and collaboration, driving the continuous evolution of the sector. Consulting firms offer expertise in network compliance and network management, ensuring regulatory adherence and optimal network performance.
How is this GIS In Telecom Sector Industry segmented?
The gis in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Software
Data
Services
Deployment
On-premises
Cloud
Application
Mapping
Telematics and navigation
Surveying
Location based services
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Product Insights
The software segment is estimated to witness significant growth during the forecast period. In the telecom sector, the deployment of 5G networks is driving the need for advanced Geographic Information Systems (GIS) to optimize network performance and efficiency. GIS technology enables spatial analysis, network automation, capacity analysis, and bandwidth management, all crucial elements in the rollout of 5G networks. Large enterprises and telecom consulting firms are integrating GIS data into their operations for network planning, optimization, and troubleshooting. Machine learning and artificial intelligence are transforming GIS applications, offering predictive analytics and real-time network performance monitoring. Network virtualization and software-defined networking are also gaining traction, enhancing network capacity and improving network reliability and maintenance.
GIS software companies provide solutions for desktops, mobiles, cloud, and servers, catering to various industry needs. Smart city initiatives and location-based services are expanding the use cases for GIS in telecom, offering new opportunities for growth. Infrastructure deployment and population density analysis are critical factors in network rollout and capacity enhancement. Network security and performance monitoring are essential components of GIS applications, ensuring network resilience and customer experience management. Edge computing and network latency reduction are also signi
This presentation covers: the history of the Data Resource Centre (DRC); why it is successful; the hardware; what you need; recent developments; and what is going on with GIS.
800+ GIS Engineers with 25+ years of experience in geospatial, We provide following as Advance Geospatial Services:
Analytics (AI)
Change detection
Feature extraction
Road assets inventory
Utility assets inventory
Map data production
Geodatabase generation
Map data Processing /Classifications
Contour Map Generation
Analytics (AI)
Change Detection
Feature Extraction
Imagery Data Processing
Ortho mosaic
Ortho rectification
Digital Ortho Mapping
Ortho photo Generation
Analytics (Geo AI)
Change Detection
Map Production
Web application development
Software testing
Data migration
Platform development
AI-Assisted Data Mapping Pipeline AI models trained on millions of images are used to predict traffic signs, road markings , lanes for better and faster data processing
Our Value Differentiator
Experience & Expertise -More than Two decade in Map making business with 800+ GIS expertise -Building world class products with our expertise service division & skilled project management -International Brand “Mappls” in California USA, focused on “Advance -Geospatial Services & Autonomous drive Solutions”
Value Added Services -Production environment with continuous improvement culture -Key metrics driven production processes to align customer’s goals and deliverables -Transparency & visibility to all stakeholder -Technology adaptation by culture
Flexibility -Customer driven resource management processes -Flexible resource management processes to ramp-up & ramp-down within short span of time -Robust training processes to address scope and specification changes -Priority driven project execution and management -Flexible IT environment inline with critical requirements of projects
Quality First -Delivering high quality & cost effective services -Business continuity process in place to address situation like Covid-19/ natural disasters -Secure & certified infrastructure with highly skilled resources and management -Dedicated SME team to ensure project quality, specification & deliverables