Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterAs of December 16, 2022, there had been almost 6.37 million COVID-19 cases in New York State, with 2.97 million cases found in New York City. New York has been one of the U.S. states most impacted by the pandemic, recording the highest number of deaths in the country.
A closer look at the outbreak in New York Towards the middle of December 2022, the number of deaths due to the coronavirus in New York State had reached almost 60 thousand, and almost half of those deaths were in New York City. However, the number of new daily deaths in New York City peaked early in the pandemic and although there have been times when the number of new daily deaths surged, they have not gotten close to reaching the levels seen at the beginning of the pandemic. New York City is made up of five counties, which are more commonly known by their borough names – Staten Island is the borough with the highest rate of COVID-19 cases.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset contains daily data trackers for the COVID-19 pandemic, aggregated by month and starting 18.3.20. The first release of COVID-19 data on this platform was on 1.6.20. Updates have been provided on a quarterly basis throughout 2023/24. No updates are currently scheduled for 2024/25 as case rates remain low. The data is accurate as at 8.00 a.m. on 8.4.24. Some narrative for the data covering the latest period is provided here below: Diagnosed cases / episodes • As at 3.4.24 CYC residents have had a total 75,556 covid episodes since the start of the pandemic, a rate of 37,465 per 100,000 of population (using 2021 Mid-Year Population estimates). The cumulative rate in York is similar to the national (37,305) and regional (37,059) averages. • The latest rate of new Covid cases per 100,000 of population for the period 28.3.24 to 3.4.24 in York was 1.49 (3 cases). The national and regional averages at this date were 1.67 and 2.19 respectively (using data published on Gov.uk on 5.4.24).
Facebook
TwitterDaily count of NYC residents who tested positive for SARS-CoV-2, who were hospitalized with COVID-19, and deaths among COVID-19 patients.
Note that this dataset currently pulls from https://raw.githubusercontent.com/nychealth/coronavirus-data/master/case-hosp-death.csv on a daily basis.
Facebook
TwitterAs of December 22, 2022, those aged 18 to 24 years had the highest rates of COVID-19 in New York City. The state of New York has been one of the hardest hit U.S. states by the COVID-19 pandemic. This statistic shows rates of COVID-19 cases in New York City by age group, as of December 22, 2022.
Facebook
TwitterAs of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
Facebook
TwitterOn December 19, 2022, there were 3,553 new cases of COVID-19 in New York City. The state of New York has been one of the hardest hit U.S. states by the COVID-19 pandemic. This statistic shows the number of new COVID-19 cases in New York City from March 8, 2020 to December 19, 2022, by diagnosis date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundMany COVID-19 patients reveal a marked decrease in their lymphocyte counts, a condition that translates clinically into immunodepression and is common among these patients. Outcomes for infected patients vary depending on their lymphocytopenia status, especially their T-cell counts. Patients are more likely to recover when lymphocytopenia is resolved. When lymphocytopenia persists, severe complications can develop and often lead to death. Similarly, IL-10 concentration is elevated in severe COVID-19 cases and may be associated with the depression observed in T-cell counts. Accordingly, this systematic review and meta-analysis aims to analyze T-cell subsets and IL-10 levels among COVID-19 patients. Understanding the underlying mechanisms of the immunodepression observed in COVID-19, and its consequences, may enable early identification of disease severity and reduction of overall morbidity and mortality.MethodsA systematic search was conducted covering PubMed MEDLINE, Scopus, Web of Science, and EBSCO databases for journal articles published from December 1, 2019 to March 14, 2021. In addition, we reviewed bibliographies of relevant reviews and the medRxiv preprint server for eligible studies. Our search covered published studies reporting laboratory parameters for T-cell subsets (CD4/CD8) and IL-10 among confirmed COVID-19 patients. Six authors carried out the process of data screening, extraction, and quality assessment independently. The DerSimonian-Laird random-effect model was performed for this meta-analysis, and the standardized mean difference (SMD) and 95% confidence interval (CI) were calculated for each parameter.ResultsA total of 52 studies from 11 countries across 3 continents were included in this study. Compared with mild and survivor COVID-19 cases, severe and non-survivor cases had lower counts of CD4/CD8 T-cells and higher levels of IL-10.ConclusionOur findings reveal that the level of CD4/CD8 T-cells and IL-10 are reliable predictors of severity and mortality in COVID-19 patients. The study protocol is registered with the International Prospective Register of Systematic Reviews (PROSPERO); registration number CRD42020218918.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218918, identifier: CRD42020218918.
Facebook
TwitterThe comprehensive understanding of the characteristics of asymptomatic cases are helpful for the identification and management of patients with asymptomatic COVID-19 infection. Four electronic databases were searched from December 1, 2019 to February 8, 2022 for relevant articles. Data synthesis, subgroup analysis, and sensitivity analysis were performed on the included studies. I2 and Q tests were applied to evaluate heterogeneity across studies. The risk of publication bias was assessed and visualized using a funnel plot. A total of 45 studies consisting of 2,655 patients with no symptoms at the screening point were included. Pooled results showed that in China, 65% of initial no-symptoms COVID-19 patients did not present any COVID-19-related symptom during follow-up or by end of disease course (asymptomatic infections). High proportions of initial no-symptoms COVID-19 patients (76%) and patients with asymptomatic infection (55%) had abnormal CT features at the screening point. High proportion of patients with asymptomatic infection had been detected Ig G+ (72%) and/or Ig M+ (57%) at the screening point. The chest CT scan and SARS-CoV-2-specific antibody testing could serve as effective supplementary methods to identify asymptomatic cases in the early stage of SARS-CoV-2 infection. However, the chest CT scan and the SARS-CoV-2-specific IgM and IgG testing should not replace reverse transcription–polymerase chain reaction (RT-PCR) for screening in asymptomatic patients. The combination of repeated RT-PCR, chest CT scans, and the SARS-CoV-2-specific IgM and IgG testing should be performed for those highly suspected SARS-CoV-2 infections.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier: CRD 42021261130.
Facebook
TwitterObjective: Cardiac injury is detected in numerous patients with coronavirus disease 2019 (COVID-19) and has been demonstrated to be closely related to poor outcomes. However, an optimal cardiac biomarker for predicting COVID-19 prognosis has not been identified.Methods: The PubMed, Web of Science, and Embase databases were searched for published articles between December 1, 2019 and September 8, 2021. Eligible studies that examined the anomalies of different cardiac biomarkers in patients with COVID-19 were included. The prevalence and odds ratios (ORs) were extracted. Summary estimates and the corresponding 95% confidence intervals (95% CIs) were obtained through meta-analyses.Results: A total of 63 studies, with 64,319 patients with COVID-19, were enrolled in this meta-analysis. The prevalence of elevated cardiac troponin I (cTnI) and myoglobin (Mb) in the general population with COVID-19 was 22.9 (19–27%) and 13.5% (10.6–16.4%), respectively. However, the presence of elevated Mb was more common than elevated cTnI in patients with severe COVID-19 [37.7 (23.3–52.1%) vs.30.7% (24.7–37.1%)]. Moreover, compared with cTnI, the elevation of Mb also demonstrated tendency of higher correlation with case-severity rate (Mb, r = 13.9 vs. cTnI, r = 3.93) and case-fatality rate (Mb, r = 15.42 vs. cTnI, r = 3.04). Notably, elevated Mb level was also associated with higher odds of severe illness [Mb, OR = 13.75 (10.2–18.54) vs. cTnI, OR = 7.06 (3.94–12.65)] and mortality [Mb, OR = 13.49 (9.3–19.58) vs. cTnI, OR = 7.75 (4.4–13.66)] than cTnI.Conclusions: Patients with COVID-19 and elevated Mb levels are at significantly higher risk of severe disease and mortality. Elevation of Mb may serve as a marker for predicting COVID-19-related adverse outcomes.Prospero Registration Number:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020175133, CRD42020175133.
Facebook
TwitterBackgroundThe current 2019 novel coronavirus disease (COVID-19) pandemic is a major threat to global health. It is currently uncertain whether and how liver injury affects the severity of COVID-19. Therefore, we conducted a meta-analysis to determine the association between liver injury and the severity of COVID-19.MethodsA systematic search of the PubMed, Embase, and Cochrane Library databases from inception to August 12, 2022, was performed to analyse the reported liver chemistry data for patients diagnosed with COVID-19. The pooled odds ratio (OR), weighted mean difference (WMD) and 95% confidence interval (95% CI) were assessed using a random-effects model. Furthermore, publication bias and sensitivity were analyzed.ResultsForty-six studies with 28,663 patients were included. The pooled WMDs of alanine aminotransferase (WMD = 12.87 U/L, 95% CI: 10.52–15.23, I2 = 99.2%), aspartate aminotransferase (WMD = 13.98 U/L, 95% CI: 12.13–15.83, I2 = 98.2%), gamma-glutamyl transpeptidase (WMD = 20.67 U/L, 95% CI: 14.24–27.10, I2 = 98.8%), total bilirubin (WMD = 2.98 μmol/L, 95% CI: 1.98–3.99, I2 = 99.4%), and prothrombin time (WMD = 0.84 s, 95% CI: 0.46–1.23, I2 = 99.4%) were significantly higher and that of albumin was lower (WMD = −4.52 g/L, 95% CI: −6.28 to −2.75, I2 = 99.9%) in severe cases. Moreover, the pooled OR of mortality was higher in patients with liver injury (OR = 2.72, 95% CI: 1.18–6.27, I2 = 71.6%).ConclusionsHepatocellular injury, liver metabolic, and synthetic function abnormality were observed in severe COVID-19. From a clinical perspective, liver injury has potential as a prognostic biomarker for screening severely affected patients at early disease stages.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, Identifier: CRD42022325206.
Facebook
TwitterHuman polymorphisms may contribute to SARS-CoV-2 infection susceptibility and COVID-19 outcomes (asymptomatic presentation, severe COVID-19, death). We aimed to evaluate the association of IFITM3, FURIN, ACE1, and TNF-α genetic variants with both phenotypes using meta-analysis. The bibliographic search was conducted on the PubMed and Scielo databases covering reports published until February 8, 2022. Two independent researchers examined the study quality using the Q-Genie tool. Using the Mantel–Haenszel weighted means method, odds ratios were combined under both fixed- and random-effect models. Twenty-seven studies were included in the systematic review (five with IFITM3, two with Furin, three with TNF-α, and 17 with ACE1) and 22 in the meta-analysis (IFITM3 n = 3, TNF-α, and ACE1 n = 16). Meta-analysis indicated no association of 1) ACE1 rs4646994 and susceptibility, 2) ACE1 rs4646994 and asymptomatic COVID-19, 3) IFITM3 rs12252 and ICU hospitalization, and 4) TNF-α rs1800629 and death. On the other hand, significant results were found for ACE1 rs4646994 association with COVID-19 severity (11 studies, 692 severe cases, and 1,433 nonsevere controls). The ACE1 rs4646994 deletion allele showed increased odds for severe manifestation (OR: 1.45; 95% CI: 1.26–1.66). The homozygous deletion was a risk factor (OR: 1.49, 95% CI: 1.22–1.83), while homozygous insertion presented a protective effect (OR: 0.57, 95% CI: 0.45–0.74). Further reports are needed to verify this effect on populations with different ethnic backgrounds.Systematic Review Registration: https://www.crd.york.ac.uk/prosperodisplay_record.php?ID=CRD42021268578, identifier CRD42021268578
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe emergence of a new coronavirus strain caused the COVID-19 pandemic. While vaccines effectively control the infection, it’s important to acknowledge the potential for side effects, including rare cases like psychosis, which may increase with the rising number of vaccinations.ObjectivesOur systematic review aimed to examine cases of new-onset psychosis following COVID-19 vaccination.MethodsWe conducted a systematic review of case reports and case series on new-onset psychosis following COVID-19 vaccination from December 1st, 2019, to November 21st, 2023, using PubMed, MEDLINE, ClinicalKey, and ScienceDirect. Data extraction covered study and participant characteristics, comorbidities, COVID-19 vaccine details, and clinical features. The Joanna Briggs Institute quality assessment tools were employed for included studies, revealing no significant publication bias.ResultsA total of 21 articles described 24 cases of new-onset psychotic symptoms following COVID-19 vaccination. Of these cases, 54.2% were female, with a mean age of 33.71 ± 12.02 years. Psychiatric events were potentially induced by the mRNA BNT162b2 vaccine in 33.3% of cases, and psychotic symptoms appeared in 25% following the viral vector ChAdOx1 nCoV-19 vaccine. The mean onset time was 5.75 ± 8.14 days, mostly reported after the first or second dose. The duration of psychotic symptoms ranged between 1 and 2 months with a mean of 52.48 ± 60.07 days. Blood test abnormalities were noted in 50% of cases, mainly mild to moderate leukocytosis and elevated C-reactive protein. Magnetic resonance imaging results were abnormal in 20.8%, often showing fluid-attenuated inversion recovery hyperintensity in the white matter. Treatment included atypical antipsychotics in 83.3% of cases, typical antipsychotics in 37.5%, benzodiazepines in 50%, 20.8% received steroids, and 25% were prescribed antiepileptic medications. Overall, 50% of patients achieved full recovery.ConclusionStudies on psychiatric side effects post-COVID-19 vaccination are limited, and making conclusions on vaccine advantages or disadvantages is challenging. Vaccination is generally safe, but data suggest a potential link between young age, mRNA, and viral vector vaccines with new-onset psychosis within 7 days post-vaccination. Collecting data on vaccine-related psychiatric effects is crucial for prevention, and an algorithm for monitoring and treating mental health reactions post-vaccination is necessary for comprehensive management.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO, identifier CRD42023446270.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCoronavirus disease 2019 (COVID-19) have brought great disaster to mankind, and there is currently no globally recognized specific drug or treatment. Severe COVID-19 may trigger a cytokine storm, manifested by increased levels of cytokines including interleukin-17 (IL-17), so a new strategy to treat COVID-19 may be to use existing IL-17 inhibitors, which have demonstrated efficacy, safety and tolerability in the treatment of psoriasis. However, the use of IL-17 inhibitors in patients with psoriasis during the COVID-19 pandemic remains controversial due to reports that IL-17 inhibitors may increase the risk of respiratory tract infections.ObjectivesThe systematic review and meta-analysis aimed to evaluate the effect of IL-17 inhibitors on the risk of COVID-19 infection, hospitalization, and mortality in patients with psoriasis.MethodsDatabases (including Embase, PubMed, SCI-Web of Science, Scopus, CNKI, and the Cochrane Library) were searched up to August 23, 2022, for studies exploring differences in COVID-19 outcomes between psoriasis patients using IL-17 inhibitors and those using non-biologics. Two authors independently extracted data and assessed the risk of bias in a double-blind manner. The risk ratios (RRs) and 95% confidence intervals (CIs) were calculated and heterogeneities were determined by the Q test and I2 statistic. And the numbers needed to treat (NNTs) were calculated to assess the clinical value of IL-17 inhibitors in preventing SARS-CoV-2 infection and treating COVID-19.ResultsNine observational studies involving 7,106 participants were included. The pooled effect showed no significant differences in the rates of SARS-CoV-2 infection (P = 0.94; I2 = 19.5%), COVID-19 hospitalization (P = 0.64; I2 = 0.0%), and COVID-19 mortality (P = 0.32; I2 = 0.0%) in psoriasis patients using IL-17 inhibitors compared with using non-biologics. Subgroup analyses grouped by age and COVID-19 cases, respectively, revealed consistent results as above. Meanwhile, the pooled NNTs showed no significant differences between the two groups in the clinical value of preventing SARS-CoV-2 infection and treating COVID-19.ConclusionThe use of IL-17 inhibitors in patients with psoriasis does not increase the risk of SARS-CoV-2 infection or worsen the course of COVID-19.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42022335195.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This systematic review aimed to provide an overview of the clinical profile and outcome of COVID-19 infection in patients with hemoglobinopathy. The rate of COVID-19 mortality and its predictors were also identified. A systematic search was conducted in accordance with PRISMA guidelines in five electronic databases (PubMed, Scopus, Web of Science, Embase, WHO COVID-19 database) for articles published between 1st December 2019 to 31st October 2020. All articles with laboratory-confirmed COVID-19 cases with underlying hemoglobinopathy were included. Methodological quality was assessed using the Joanna Briggs Institute (JBI) critical appraisal checklists. Thirty-one articles with data on 246 patients with hemoglobinopathy were included in this review. In general, clinical manifestations of COVID-19 infection among patients with hemoglobinopathy were similar to the general population. Vaso-occlusive crisis occurred in 55.6% of sickle cell disease patients with COVID-19 infection. Mortality from COVID-19 infection among patients with hemoglobinopathy was 6.9%. After adjusting for age, gender, types of hemoglobinopathy and oxygen supplementation, respiratory (adj OR = 89.63, 95% CI 2.514–3195.537, p = 0.014) and cardiovascular (adj OR = 35.20, 95% CI 1.291–959.526, p = 0.035) comorbidities were significant predictors of mortality. Patients with hemoglobinopathy had a higher mortality rate from COVID-19 infection compared to the general population. Those with coexisting cardiovascular or respiratory comorbidities require closer monitoring during the course of illness. More data are needed to allow a better understanding on the clinical impact of COVID-19 infections among patients with hemoglobinopathy.Clinical Trial Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020218200.
Facebook
TwitterIntroductionShufeng Jiedu capsule (SFJD) is a commonly used Chinese patent medicine in China. Some studies have reported that SFJD has therapeutic effects in patients diagnosed with COVID-19. This systematic review aimed to critically evaluate the efficacy and safety of SFJD combined with western medicine (WM) for treating COVID-19.MethodsA literature search by using WHO COVID-19 database, PubMed, Embase, Cochrane Library, the Web of Science, CKNI, Wanfang, VIP, SinoMed, and clinical trial registries was conducted, up to 1 August 2022. Randomized controlled trials (RCTs), non-RCTs, cohort studies and case series of SFJD combined with WM for COVID-19 were included. Literature screening, data extraction, and quality assessment were performed independently by two reviewers in line with the same criteria. We used the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) to assess the certainty of evidence. Meta-analyses were performed with Revman 5.3 if possible. The descriptive analysis was conducted when the studies could not be meta-analyzed.ResultsTotally 10 studies with 1,083 patients were included. Their methodological quality were moderate. The results demonstrated that compared to WM group, SFJD + WM group remarkably increased the nucleic acid negative conversion rate (RR = 1.40, 95%CI: 1.07–1.84), total effective rate (RR = 1.18, 95%CI: 1.07–1.31), cure rate (RR = 4.06, 95%CI: 2.19–7.53), and the chest CT improvement rate (RR = 1.19, 95%CI: 1.08–1.31), shorten nucleic acid negative conversion time (MD = −0.70, 95%CI: −1.14 to −0.26), reduced the clinical symptom disappearance time (fever, diarrhea, cough, fatigue, pharyngalgia, nasal congestion, and rhinorrhea), as well as improved the levels of laboratory outcomes (CRP, IL-6, Lym, and Neu). Additionally, the incidence of adverse reactions did not exhibit any statistically significant difference between SFJD + WM group and WM group.ConclusionSFJD combined with WM seems more effective than WM alone for the treatment of COVID-19. However, more well-designed RCTs still are warranted.Systematic review registration[https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022306307].
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite surviving Coronavirus disease 2019 (COVID-19), its long-term impact is of concern. Low cardiorespiratory fitness is a strong predictor of all-cause mortality, and likely affected by multisystem impairments following COVID-19 infection. Accumulating evidence has identified the impact of COVID-19 on cardiorespiratory fitness level. However, the findings have been controversial. Conclusive evidence is still needed.ObjectivesThis review aimed to systematically summarize and synthesize whether the SARS-CoV-2 infection diminishes cardiorespiratory fitness in COVID-19 survivors.DesignThe study design was a systematic review and meta-analysis.MethodsA search was carried out using PubMed, CINAHL, Scopus, Embase and the Cochrane Library, together with reference lists (searching from their inception to January 2023). Observational studies investigating the impact of COVID-19 on outcomes relevant to cardiorespiratory fitness (i.e., peak oxygen uptake) were included. Weighted mean difference (WMD) and 95% confidence interval (CI) were used to identify a pooled effect estimate. Use of a random effects model was considered as the main method. Grading of Recommendation Assessment, Development and Evaluation approach was employed to determine the certainty of evidence. This meta-analysis was registered with PROSPERO (registration number: CRD42023393108).ResultsSeven eligible studies (4 cross-sectional, 2 cohort, and 1 case–control studies) involving 4,773 participants were included in this meta-analysis. A pooled effect estimates showed that patients in the surviving COVID-19 group had a significant reduction in peak oxygen uptake when compared to their counterparts in the non-COVID-19 group (WMD −6.70, 95%CI −9.34 to −4.06, low certainty). A subgroup analysis by age found that COVID-19 survivors in the young- to middle-aged and middle- to older-aged subgroups had significant reductions in peak oxygen uptake when compared to their counterparts in the non-COVID-19 group (WMD −5.31, 95%CI −7.69 to −2.94, low certainty; WMD −15.63, 95%CI −28.50 to −2.75, very low certainty, respectively). Subgroup analyses by symptom found that patients with moderate to severe symptoms in the surviving COVID-19 group had significantly lower peak oxygen uptake than their counterparts in the non-COVID-19 group (WMD −15.63, 95%CI −28.50 to −2.75, very low certainty).ConclusionThe current meta-analysis concluded that patients in the COVID-19 survivors had poorer cardiorespiratory fitness than their counterparts in the non-COVID-19 group, but there is considerable uncertainty of evidence. Poorer cardiorespiratory fitness is likely to be more pronounced in COVID-19 survivors who are getting older and had severe symptoms, but it is uncertain whether such finding has a valuable in clinical context.Systematic Review Registrationhttps://www.crd.york.ac.uk/PROSPERO/, CRD42023393108.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundNearly 6,000 multisystem inflammatory syndrome in children (MIS-C) have been reported in the United States by November 2021. Left ventricular global myocardial strain has been proved to be one of the best evidence of the diagnostic and prognostic implications for cardiac dysfunction. The global myocardial strain change of MIS-C in the acute phase was still unclear.MethodsPubMed and other sources were searched. A network meta-analysis was conducted. MIS-C was divided into two groups according to left ventricular ejection fraction (LVEF): MIS-C with depressed ejection fraction (MIS-C dEF) and MIS-C with preserved ejection fraction (MIS-C pEF). Global longitudinal strain (GLS) and global circumferential strain (GCS) were compared among MIS-C, Kawasaki disease (KD), and healthy children.ResultsIn total, nine case-control studies were included, published between 2014 and 2021. These studies involved 107 patients with MIS-C, 188 patients with KD, and 356 healthy children. After Bayesian analysis, MIS-C dEF group was found to have a lower LVEF, higher GLS and GCS than the KD groups. Both MIS-C pEF and KD had similar GLS and GCS, which were higher than healthy controls. There was no difference of LVEF among MIS-C pEF, KD, and healthy controls.ConclusionMIS-C dEF was more severe than KD, both in LVEF and global myocardial strain. MIS-C pEF and KD were similar with mild impaired left ventricular myocardial strain compared with the healthy children. Global myocardial strain may be a monitoring index for MIS-C.Systematic Review Registration[https://www.crd.york.ac.uk/prospero/], identifier [CRD42021264760].
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundHybrid immunity (a combination of natural and vaccine-induced immunity) provides additional immune protection against the coronavirus disease 2019 (COVID-19) reinfection. Today, people are commonly infected and vaccinated; hence, hybrid immunity is the norm. However, the mitigation of the risk of Omicron variant reinfection by hybrid immunity and the durability of its protection remain uncertain. This meta-analysis aims to explore hybrid immunity to mitigate the risk of Omicron variant reinfection and its protective durability to provide a new evidence-based basis for the development and optimization of immunization strategies and improve the public’s awareness and participation in COVID-19 vaccination, especially in vulnerable and at-risk populations.MethodsEmbase, PubMed, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases were searched for publicly available literature up to 10 June 2024. Two researchers independently completed the data extraction and risk of bias assessment and cross-checked each other. The Newcastle-Ottawa Scale assessed the risk of bias in included cohort and case–control studies, while criteria recommended by the Agency for Health Care Research and Quality (AHRQ) evaluated cross-sectional studies. The extracted data were synthesized in an Excel spreadsheet according to the predefined items to be collected. The outcome was Omicron variant reinfection, reported as an Odds Ratio (OR) with its 95% confidence interval (CI) and Protective Effectiveness (PE) with 95% CI. The data were pooled using a random- or fixed-effects model based on the I2 test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed.ResultsThirty-three articles were included. Compared with the natural immunity group, the hybrid immunity (booster vaccination) group had the highest level of mitigation in the risk of reinfection (OR = 0.43, 95% CI:0.34–0.56), followed by the complete vaccination group (OR = 0.58, 95% CI:0.45–0.74), and lastly the incomplete vaccination group (OR = 0.64, 95% CI:0.44–0.93). Compared with the complete vaccination-only group, the hybrid immunity (complete vaccination) group mitigated the risk of reinfection by 65% (OR = 0.35, 95% CI:0.27–0.46), and the hybrid immunity (booster vaccination) group mitigated the risk of reinfection by an additional 29% (OR = 0.71, 95% CI:0.61–0.84) compared with the hybrid immunity (complete vaccination) group. The effectiveness of hybrid immunity (incomplete vaccination) in mitigating the risk of reinfection was 37.88% (95% CI, 28.88–46.89%) within 270–364 days, and decreased to 33.23%% (95% CI, 23.80–42.66%) within 365–639 days; whereas, the effectiveness after complete vaccination was 54.36% (95% CI, 50.82–57.90%) within 270–364 days, and the effectiveness of booster vaccination was 73.49% (95% CI, 68.95–78.04%) within 90–119 days.ConclusionHybrid immunity was significantly more protective than natural or vaccination-induced immunity, and booster doses were associated with enhanced protection against Omicron. Although its protective effects waned over time, vaccination remains a crucial measure for controlling COVID-19.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO/, identifier, CRD42024539682.
Facebook
Twitterhttps://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.