Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.
Overview This data set consists of links to social network items for 34 different forensic events that took place between August 14th, 2018 and January 06th, 2021. The majority of the text and images are from Twitter (a minor part is from Flickr, Facebook and Google+), and every video is from YouTube. Data Collection We used Social Tracker, along with the social medias' APIs, to gather most of the collections. For a minor part, we used Twint. In both cases, we provided keywords related to the event to receive the data. It is important to mention that, in procedures like this one, usually only a small fraction of the collected data is in fact related to the event and useful for a further forensic analysis. Content We have data from 34 events, and for each of them we provide the files: items_full.csv: It contains links to any social media post that was collected. images.csv: Enlists the images collected. In some files there is a field called "ItemUrl", that refers to the social network post (e.g., a tweet) that mentions that media. video.csv: Urls of YouTube videos that were gathered about the event. video_tweet.csv: This file contains IDs of tweets and IDs of YouTube videos. A tweet whose ID is in this file has a video in its content. In turn, the link of a Youtube video whose ID is in this file was mentioned by at least one collected tweet. Only two collections have this file. description.txt: Contains some standard information about the event, and possibly some comments about any specific issue related to it. In fact, most of the collections do not have all the files above. Such an issue is due to changes in our collection procedure throughout the time of this work. Events We divided the events into six groups. They are: Fire: Devastating fire is the main issue of the event, therefore most of the informative pictures show flames or burned constructions. 14 Events Collapse: Most of the relevant images depict collapsed buildings, bridges, etc. (not caused by fire). 5 Events Shooting: Likely images of guns and police officers. Few or no destruction of the environment. 5 Events Demonstration: Plethora of people on the streets. Possibly some problem took place on that, but in most cases the demonstration is the actual event. 7 Events Collision: Traffic collision. Pictures of damaged vehicles on an urban landscape. Possibly there are images with victims on the street. 1 Event Flood: Events that range from fierce rain to a tsunami. Many pictures depict water. 2 Events Media Content Due to the terms of use from the social networks, we do not make publicly available the texts, images and videos that were collected. However, we can provide some extra piece of media content related to one (or more) events by contacting the authors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the accompanying dataset that was generated by the GitHub project: https://github.com/tonyreina/tdc-tcr-epitope-antibody-binding. In that repository I show how to create a machine learning models for predicting if a T-cell receptor (TCR) and protein epitope will bind to each other.
A model that can predict how well a TCR bindings to an epitope can lead to more effective treatments that use immunotherapy. For example, in anti-cancer therapies it is important for the T-cell receptor to bind to the protein marker in the cancer cell so that the T-cell (actually the T-cell's friends in the immune system) can kill the cancer cell.
import pandas as pd
train_data = pd.read_pickle("train_data.pkl")
validation_data = pd.read_pickle("validation_data.pkl")
test_data = pd.read_pickle("test_data.pkl")
The epitope_aa and the tcr_full columns are the protein (peptide) sequences for the epitope and the T-cell receptor, respectively. The letters correspond to the standard amino acid codes.
The epitope_smi column is the SMILES notation for the chemical structure of the epitope. We won't use this information. Instead, the ESM-1b embedder should be sufficient for the input to our binary classification model.
The tcr column is the CDR3 hyperloop. It's the part of the TCR that actually binds (assuming it binds) to the epitope.
The label column is whether the two proteins bind. 0 = No. 1 = Yes.
The tcr_vector and epitope_vector columns are the bio-embeddings of the TCR and epitope sequences generated by the Facebook ESM-1b model. These two vectors can be used to create a machine learning model that predicts whether the combination will produce a successful protein binding.
From the TDC website:
T-cells are an integral part of the adaptive immune system, whose survival, proliferation, activation and function are all governed by the interaction of their T-cell receptor (TCR) with immunogenic peptides (epitopes). A large repertoire of T-cell receptors with different specificity is needed to provide protection against a wide range of pathogens. This new task aims to predict the binding affinity given a pair of TCR sequence and epitope sequence.
Weber et al.
Dataset Description: The dataset is from Weber et al. who assemble a large and diverse data from the VDJ database and ImmuneCODE project. It uses human TCR-beta chain sequences. Since this dataset is highly imbalanced, the authors exclude epitopes with less than 15 associated TCR sequences and downsample to a limit of 400 TCRs per epitope. The dataset contains amino acid sequences either for the entire TCR or only for the hypervariable CDR3 loop. Epitopes are available as amino acid sequences. Since Weber et al. proposed to represent the peptides as SMILES strings (which reformulates the problem to protein-ligand binding prediction) the SMILES strings of the epitopes are also included. 50% negative samples were generated by shuffling the pairs, i.e. associating TCR sequences with epitopes they have not been shown to bind.
Task Description: Binary classification. Given the epitope (a peptide, either represented as amino acid sequence or as SMILES) and a T-cell receptor (amino acid sequence, either of the full protein complex or only of the hypervariable CDR3 loop), predict whether the epitope binds to the TCR.
Dataset Statistics: 47,182 TCR-Epitope pairs between 192 epitopes and 23,139 TCRs.
References:
Dataset License: CC BY 4.0.
Contributed by: Anna Weber and Jannis Born.
Checkpoint name | Number of layers | Number of parameters |
esm2_t48_15B_UR50D | 48 | 15B |
esm2_t36_3B_UR50D | 36 | 3B |
esm2_t33_650M_UR50D | 33 | 650M |
esm2_t30_150M_UR50D | 30 | 150M |
esm2_t12_35M_UR50D | 12 | 35M |
esm2_t6_8M_UR50D | 6 | 8M |
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
Network monitoring and analysis of consumption behavior represents an important aspect for network operators allowing to obtain vital information about consumption trends in order to offer new data plans aimed at specific users and obtain an adequate perspective of the network. Over-the-top (OTT) media and communications services and applications are shifting the Internet consumption by increasing the traffic generation over the different available networks. OTT refers to applications that deliver audio, video, and other media over the Internet by leveraging the infrastructure deployed by network operators but without their involvement in the control or distribution of the content and are known by their large consumption of network resources.
This dataset contains 1581 instances and 131 attributes on a single file. Each instance represents a user’s consumption profile which holds summarized information about the consumption behavior of the user related to the 29 OTT applications identified in the different IP flows captured in order to create the dataset
The OTT applications that the users interacted with during the capture experiment and were stored on the dataset are: Amazon, Apple store, Apple Icloud, Apple Itunes, Deezer, Dropbox, EasyTaxi, Ebay, Facebook, Gmail, Google suite, Google Maps, Browsing (HTTP, HTTP_Connect, HTTP_Download, HTTP_Proxy), Instagram, LastFM, Microsoft One Drive (MS_One_Drive), Facebook Messenger (MSN), Netflix, Skype, Spotify, Teamspeak, Teamviewer, Twitch, Twitter, Waze, Whatsapp, Wikipedia, Yahoo and Youtube.
Each application has 4 different types of attributes (quantity of generated flows, mean duration of the flows, average size of the packets exchanged on the flows and the mean bytes per second on the flows). These attributes summarizes the interaction that the user had with the respective OTT application in terms of consumption. Furthermore, the dataset contains the user’s IP address in network and decimal format which are used as user identifiers. Finally the User Group attribute represents the objective class (high consumption, medium consumption and low consumption) in which a user is classified considering his/her OTT consumption behavior. All of this information gives a total of 131 attributes.
For further information you can read and please cite the following papers:
Springer: https://link.springer.com/chapter/10.1007/978-3-319-95168-3_37
IEEExplore: https://ieeexplore.ieee.org/document/8845576
The structure of the attributes and its definition is presented below:
Source.Decimal: This attribute holds the user’s IP address in decimal format and it is mainly used as a user identifier.
Source.IP: This attribute holds the user’s IP address in network format (e.g., 192.168.14.35) and as in the previous case its main function is to work as a user identifier.
Application-Name.Flows: This type of attributes hold the information about the quantity of IP flows that a user generated toward an OTT application. As was mentioned before each application has a group of 4 attributes that describe the interaction of the user with a specific OTT application (an example for this case would be Netflix.Flows or Facebook.Flows).
Application-Name.Flow.Duration.Mean: This type of attributes hold the information related to the mean duration (time) of the flows generated by the user towards a specific OTT application, measured in microseconds. Examples of how this attributes are stored in the dataset are: Amazon.Flow.Duration.Mean or Instagram.Flow.Duration.Mean.
Application-Name.AVG.Packet.Size: This type of attributes hold the average size of the IP packets that were exchanged in all the flows generated by the user towards a specific OTT application, measured in bytes. It is important to notice that this size is focused on the packet’s header only. Examples of how this attribute are presented on the dataset are: Google_Maps.AVG.Packet.Size or Spotify.AVG.Packet.Size.
Application-Name.Flow.Bytes.Per.Sec: This type of attributes hold the mean number of bytes per second that were exchanged in the flows generated by the user towards a specific OTT application. Examples of this kind of attributes in the dataset are: Deezer.Flow.Bytes.Per.Sec or Skype.Flow.Bytes.Per.Sec.
User.Group: This type of attribute represents the objective class of the dataset i.e., the different groups that the users are classified in according to their OTT consumption behavior...
As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.
Facebook connects the world
Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
As of April 2024, Facebook had an addressable ad audience reach 131.1 percent in Libya, followed by the United Arab Emirates with 120.5 percent and Mongolia with 116 percent. Additionally, the Philippines and Qatar had addressable ad audiences of 114.5 percent and 111.7 percent.
This statistic shows a ranking of the estimated number of Facebook users in 2020 in Africa, differentiated by country. The user numbers have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Which county has the most Facebook users?
There are more than 378 million Facebook users in India alone, making it the leading country in terms of Facebook audience size. To put this into context, if India’s Facebook audience were a country then it would be ranked third in terms of largest population worldwide. Apart from India, there are several other markets with more than 100 million Facebook users each: The United States, Indonesia, and Brazil with 193.8 million, 119.05 million, and 112.55 million Facebook users respectively.
Facebook – the most used social media
Meta, the company that was previously called Facebook, owns four of the most popular social media platforms worldwide, WhatsApp, Facebook Messenger, Facebook, and Instagram. As of the third quarter of 2021, there were around 3,5 billion cumulative monthly users of the company’s products worldwide. With around 2.9 billion monthly active users, Facebook is the most popular social media worldwide. With an audience of this scale, it is no surprise that the vast majority of Facebook’s revenue is generated through advertising.
Facebook usage by device
As of July 2021, it was found that 98.5 percent of active users accessed their Facebook account from mobile devices. In fact, almost 81.8 percent of Facebook audiences worldwide access the platform only via mobile phone. Facebook is not only available through mobile browser as the company has published several mobile apps for users to access their products and services. As of the third quarter 2021, the four core Meta products were leading the ranking of most downloaded mobile apps worldwide, with WhatsApp amassing approximately six billion downloads.