https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication reports information from the CSDS. This is a monthly report on publicly funded community services for children, young people and adults using data from the Community Services Data Set (CSDS) reported in England for October 2018. The CSDS is a patient-level dataset providing information relating to publicly funded community services for children, young people and adults. These services can include health centres, schools, mental health trusts, and health visiting services. The data collected includes personal and demographic information, diagnoses including long-term conditions and disabilities and care events plus screening activities. It has been developed to help achieve better outcomes for children, young people and adults. It provides data that will be used to commission services in a way that improves health, reduces inequalities, and supports service improvement and clinical quality. Prior to October 2017, the predecessor Children and Young Peoples Health Services (CYPHS) Data Set collected data for children and young people aged 0-18. The CSDS superseded the CYPHS data set to allow adult community data to be submitted, expanding the scope of the existing data set by removing the 0-18 age restriction. The structure and content of the CSDS remains the same as the previous CYPHS data set. Further information about the CYPHS and related statistical reports is available in the related links below. References to children and young people covers records submitted for 0-18 year olds and references to adults covers records submitted for those aged over 18. Where analysis for both groups have been combined, this is referred to as all patients. These statistics are classified as experimental and should be used with caution. Experimental statistics are new official statistics undergoing evaluation. They are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. More information about experimental statistics can be found on the UK Statistics Authority website. We hope this information is helpful and would be grateful if you could spare a couple of minutes to complete a short customer satisfaction survey. Please use the survey in the related links to provide us with any feedback or suggestions for improving the report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the England, AR population pyramid, which represents the England population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for England Population by Age. You can refer the same here
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report contains results from the latest survey of secondary school pupils in England in years 7 to 11 (mostly aged 11 to 15), focusing on smoking, drinking and drug use. It covers a range of topics including prevalence, habits, attitudes, and wellbeing. In 2023 the survey was administered online for the first time, instead of paper-based surveys as in previous years. This move online also meant that completion of the survey could be managed through teacher-led sessions, rather than being conducted by external interviewers. The 2023 survey also introduced additional questions relating to pupils wellbeing. These included how often the pupil felt lonely, felt left out and that they had no-one to talk to. Results of analysis covering these questions have been presented within parts of the report and associated data tables. The report includes this summary report showing key findings, excel tables with more detailed outcomes, technical appendices and a data quality statement. An anonymised record level file of the underlying data on which users can carry out their own analysis will be made available via the UK Data Service in early 2025 (see link below).
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
ONS Mid-year estimates (MYE) of resident populations for London boroughs are available in the following files:
Read the GLA Intelligence Updates about the MYE data for 2011 and 2012.
Mid-year population by single year of age (SYA) and sex, for each year 1999 to 2014.
ONS mid-year estimates data back to 1961 total population for each year since 1961.
These files take into account the revised estimates released in 2010.
Ward level Population Estimates
London wards single year of age data covering each year since 2002.
Custom Age Range Tool
An Excel tool is available that uses Single year of age data that enables users to select any age range required.
ONS policy is to publish population estimates rounded to at least the nearest hundred persons. Estimates by single year of age, and the detailed components of change are provided in units to facilitate further calculations. They cannot be guaranteed to be as exact as the level of detail implied by unit figures.
Estimates are calculated by single year of age but these figures are less reliable and ONS advise that they should be aggregated to at least five-year age groupings for use in further calculations, onwards circulation, or for presentation purposes. (Splitting into 0 year olds and 1-4 year olds is an acceptable exception).
ONS mid-year population estimates data by 5 year age groups going all the way back to 1981, are available on the NOMIS website.
Data are Crown Copyright and users should include a source accreditation to ONS - Source: Office for National Statistics. Under the terms of the Open Government License (OGL) and UK Government Licensing Framework, anyone wishing to use or re-use ONS material, whether commercially or privately, may do so freely without a specific application. For further information, go to http://www.nationalarchives.gov.uk/doc/open-government-licence/ or phone 020 8876 3444.
For a detailed explanation of the methodology used in population estimates, see papers available on the Population Estimates section of the ONS website. Additional information can also be obtained from Population Estimates Customer Services at pop.info@ons.gsi.gov.uk (Tel: 01329 444661).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the England population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of England. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,551 (60.54% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for England Population by Age. You can refer the same here
Abstract copyright UK Data Service and data collection copyright owner.
The Health Survey for England (HSE) is a series of surveys designed to monitor trends in the nation's health. It was commissioned by NHS Digital and carried out by the Joint Health Surveys Unit of the National Centre for Social Research and the Department of Epidemiology and Public Health at University College London.Changes to the HSE from 2015:
Users should note that from 2015 survey onwards, only the individual data file is available under standard End User Licence (EUL). The household data file is now only included in the Special Licence (SL) version, released from 2015 onwards. In addition, the SL individual file contains all the variables included in the HSE EUL dataset, plus others, including variables removed from the EUL version after the NHS Digital disclosure review. The SL HSE is subject to more restrictive access conditions than the EUL version (see Access information). Users are advised to obtain the EUL version to see if it meets their needs before considering an application for the SL version.
COVID-19 and the HSE:
Due to the COVID-19 pandemic, the HSE 2020 survey was stopped in March 2020 and never re-started. There was no publication that year. The survey resumed in 2021, albeit with an amended methodology. The full HSE resumed in 2022, with an extended fieldwork period. Due to this, the decision was taken not to progress with the 2023 survey, to maximise the 2022 survey response and enable more robust reporting of data. See the NHS Digital Health Survey for England - Health, social care and lifestyles webpage for more details.
Latest edition information
For the second edition (August 2022), edits were made to the labels for national identity variables YNatSC1-6 and the documentation was updated accordingly.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Employment, unemployment and economic inactivity levels and rates by age group, UK, rolling three-monthly figures, seasonally adjusted. Labour Force Survey. These are official statistics in development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the England population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of England. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 1,489 (57.98% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for England Population by Age. You can refer the same here
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Dataset population: Dependent children
Age of dependent children
A dependent child is any person aged 0 to 15 in a household (whether or not in a family) or a person aged 16 to 18 who's in full-time education and living in a family with his or her parent(s) or grandparent(s). It does not include any people aged 16 to 18 who have a spouse, partner or child living in the household.
Ethnic group of HRP
Ethnic group classifies people according to their own perceived ethnic group and cultural background.
The concept of a Household Reference Person (HRP) was introduced in the 2001 Census (in common with other government surveys in 2001/2) to replace the traditional concept of the 'head of the household'. HRPs provide an individual person within a household to act as a reference point for producing further derived statistics and for characterising a whole household according to characteristics of the chosen reference person.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the England population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for England. The dataset can be utilized to understand the population distribution of England by age. For example, using this dataset, we can identify the largest age group in England.
Key observations
The largest age group in England, AR was for the group of age 55 to 59 years years with a population of 261 (10.16%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in England, AR was the 85 years and over years with a population of 36 (1.40%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for England Population by Age. You can refer the same here
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Excel Age-Range creator for Office for National Statistics (ONS) Mid year population estimates (MYE) covering each year between 1999 and 2016
These files take into account the revised estimates for 2002-2010 released in April 2013 down to Local Authority level and the post 2011 estimates based on the Census results. Scotland and Northern Ireland data has not been revised, so Great Britain and United Kingdom totals comprise the original data for these plus revised England and Wales figures.
This Excel based tool enables users to query the single year of age raw data so that any age range can easily be calculated without having to carry out often complex, and time consuming formulas that could also be open to human error. Simply select the lower and upper age range for both males and females and the spreadsheet will return the total population for the range. Please adhere to the terms and conditions of supply contained within the file.
Tip: You can copy and paste the rows you are interested in to another worksheet by using the filters at the top of the columns and then select all by pressing Ctrl+A. Then simply copy and paste the cells to a new location.
ONS Mid year population estimates
Open Excel tool (London Boroughs, Regions and National, 1999-2016)
Also available is a custom-age tool for all geographies in the UK. Open the tool for all UK geographies (local authority and above) for: 2010, 2011, 2012, 2013, 2014 and 2015.
This full MYE dataset by single year of age (SYA) age and gender is available as a Datastore package here.
Ward Level Population estimates
Single year of age population tool for 2002 to 2015 for all wards in London.
New 2014 Ward boundary estimates
Ward boundary changes in May 2014 only affected three London boroughs - Hackney, Kensington and Chelsea, and Tower Hamlets. The estimates between 2001-2013 have been calculated by the GLA by taking the proportion of a the old ward that falls within the new ward based on the proportion of population living in each area at the 2011 Census. Therefore, these estimates are purely indicative and are not official statistics and not endorsed by ONS. From 2014 onwards, ONS began publishing official estimates for the new ward boundaries. Download here.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Principal projection for England - population by five-year age groups and sex.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Analysis of data from the Community Life Survey looking at how 16- to 24-year-olds engage with their local area, compared with adults aged 25 and over. The data covers England only.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
The Area Level Index of Age Diversity (ALIAD) is based on the Simpson's Index of Diversity. It is commonly used in ecological studies to quantify the biodiversity of a habitat as it takes into account both the richness, i.e. the number of species present, and the evenness, i.e. the abundance of each species, within an environment. As species richness and evenness increase, so diversity increases. The index represents the probability that two randomly selected individuals will belong to different groups. It ranges from 0 and 100, with higher values representing greater diversity. ALIAD was computed for each Lower Super Output Area (LSOA) in England and Wales (E&W), each Data Zone (DZ) in Scotland and each Super Output Area (SOA) in Northern Ireland from 2002 to 2019. It is based on the mid-year population estimates (MYPE) for each area for each year. This is information is freely available in accordance with version 3.0 of the Open Government Licence. However, the different national statistical agencies compute MYPE for different age groups. In England and Wales estimates are provided for single-year age groups, i.e. the number of people aged 0, 1, 2, 3, etc. In Scotland estimates are provided for quinary age groups, i.e. the number of people aged 0-4, 5-9, 10-14, etc. In Northern Ireland (NI) estimates are provided for four larger age groups, i.e. 0-15, 16-39, 40-64 and 65+. It was decided to match the age groups to the NI classification as i) this would provide the greatest geographical coverage, ii) the estimates ought to be more robust and iii) in discussions with policy and practice stakeholders these age groups were seen as more meaningful than single-year or quinary age groups. An exact match was possible between the E&W and NI age groups. However, because of the use of quinary age groups it is not possible to get an exact match for all age groups in Scotland. Hence, the age groups used on Scotland are 0-14, 15-39, 40-64 and 65+. The final dataset contains the computed ALIAD values for each of the 34,753 LSOAs, the 6,976 DZs and the 890 SOAs from 2002-2019. ALIAD has a range of 0-100. On this scale 0 would represent total age concentration, i.e. every member of the area is in the same age group, and 100 would represent complete age diversity within the area.There is evidence that Britain is becoming more and more generationally divided. A major part of this is that the places where we live have become increasingly 'age segregated'. This means younger people tend to live in places where there are more younger people and older people tend to live in places where there are more older people. Deep generational divisions can have implications for social cohesion and effective societal functioning. Policy makers are concerned that this could have negative health, economic, social and political costs. Indeed, a recent report by the Resolution Foundation estimated that age-segregation could cost the UK economy £6 billion per year. However, there is currently no research in Britain that has been able to directly test whether living in areas with a greater mix of ages has an impact on people. By linking information on the number of people in different age groups at the local level with information from a long running survey, our project will be the first to do this. We will create a new measure, called the 'area level index of age diversity', for all the residential areas in Great Britain (these are called Lower Super Output Areas in England and Wales and Data Zones in Scotland). Unlike existing measures which tend to focus just on younger versus older adults, this new measure will use information from people of all ages to get a better idea of the mix of age groups in an area. The first thing we intend to do with this information is to produce a series of maps of Britain to show which local areas are more or less age diverse. This information will be very useful for local government, councils, city planners and the like. Once we have done this, we will then link our new measure of age diversity to information on around 50,000 people living in Britain who have been part of a long running study (called the UK Household Longitudinal Survey). This will enable us to see whether living in areas that have people from a wide (or narrow) range of age groups impacts on people's health (e.g. whether the person has an illness or chronic condition), well-being (e.g. loneliness), civic participation (e.g. whether someone volunteers or not), and neighbourhood quality (e.g. whether people trust their neighbours). Our findings will provide a much needed evidence base on the extent of local area level age diversity in Britain and what effect (if any) this has on people's lives. ALIAD was computed for each Lower Super Output Area (LSOA) in England and Wales (E&W), each Data Zone (DZ) in Scotland and each Super Output Area (SOA) in Northern Ireland from 2002 to 2019. It is based on the mid-year population estimates (MYPE) for each area for each year.
For further detailed information about methodology, users should consult the Labour Force Survey User Guide, included with the APS documentation. For variable and value labelling and coding frames that are not included either in the data or in the current APS documentation, users are advised to consult the latest versions of the LFS User Guides, which are available from the ONS Labour Force Survey - User Guidance webpages.
Occupation data for 2021 and 2022
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. The affected datasets have now been updated. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022
APS Well-Being Datasets
From 2012-2015, the ONS published separate APS datasets aimed at providing initial estimates of subjective well-being, based on the Integrated Household Survey. In 2015 these were discontinued. A separate set of well-being variables and a corresponding weighting variable have been added to the April-March APS person datasets from A11M12 onwards. Further information on the transition can be found in the Personal well-being in the UK: 2015 to 2016 article on the ONS website.
APS disability variables
Over time, there have been some updates to disability variables in the APS. An article explaining the quality assurance investigations on these variables that have been conducted so far is available on the ONS Methodology webpage.
The Secure Access data have more restrictive access conditions than those made available under the standard EUL. Prospective users will need to gain ONS Accredited Researcher status, complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables. Users are strongly advised to first obtain the standard EUL version of the data to see if they are sufficient for their research requirements.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This report presents findings from the third (wave 3) in a series of follow up reports to the 2017 Mental Health of Children and Young People (MHCYP) survey, conducted in 2022. The sample includes 2,866 of the children and young people who took part in the MHCYP 2017 survey. The mental health of children and young people aged 7 to 24 years living in England in 2022 is examined, as well as their household circumstances, and their experiences of education, employment and services and of life in their families and communities. Comparisons are made with 2017, 2020 (wave 1) and 2021 (wave 2), where possible, to monitor changes over time.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of physical illnesses that are linked with obesity and inactivity. Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to:- Asthma (in persons of all ages)- Cancer (in persons of all ages)- Chronic kidney disease (in adults aged 18+)- Coronary heart disease (in persons of all ages)- Diabetes mellitus (in persons aged 17+)- Hypertension (in persons of all ages)- Stroke and transient ischaemic attack (in persons of all ages)This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.For each of the above illnesses, the percentage of each MSOA’s population with that illness was estimated. This was achieved by calculating a weighted average based on:- The percentage of the MSOA area that was covered by each GP practice’s catchment area- Of the GPs that covered part of that MSOA: the percentage of patients registered with each GP that have that illnessThe estimated percentage of each MSOA’s population with each illness was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with each illness, within the relevant age range.For each illness, each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have that illnessB) the NUMBER of people within that MSOA who are estimated to have that illnessAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA predicted to have that illness, compared to other MSOAs. In other words, those are areas where a large number of people are predicted to suffer from an illness, and where those people make up a large percentage of the population, indicating there is a real issue with that illness within the population and the investment of resources to address that issue could have the greatest benefits.The scores for each of the 7 illnesses were added together then converted to a relative score between 1 – 0 (1 = worst, 0 = best), to give an overall score for each MSOA: a score close to 1 would indicate that an area has high predicted levels of all obesity/inactivity-related illnesses, and these are areas where the local population could benefit the most from interventions to address those illnesses. A score close to 0 would indicate very low predicted levels of obesity/inactivity-related illnesses and therefore interventions might not be required.LIMITATIONS1. GPs do not have catchments that are mutually exclusive from each other: they overlap, with some geographic areas being covered by 30+ practices. This dataset should be viewed in combination with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset to identify where there are areas that are covered by multiple GP practices but at least one of those GP practices did not provide data. Results of the analysis in these areas should be interpreted with caution, particularly if the levels of obesity/inactivity-related illnesses appear to be significantly lower than the immediate surrounding areas.2. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).3. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.4. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of obesity/inactivity-related illnesses, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of these illnesses. TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:- Health and wellbeing statistics (GP-level, England): Missing data and potential outliersDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of hypertension (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to hypertension (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with hypertension was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with hypertension was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with hypertension , within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have hypertension B) the NUMBER of people within that MSOA who are estimated to have hypertension An average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have hypertension , compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from hypertension, and where those people make up a large percentage of the population, indicating there is a real issue with hypertension within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of hypertension, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of hypertension .TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Internet use in the UK annual estimates by age, sex, disability, ethnic group, economic activity and geographical location, including confidence intervals.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication reports information from the CSDS. This is a monthly report on publicly funded community services for children, young people and adults using data from the Community Services Data Set (CSDS) reported in England for October 2018. The CSDS is a patient-level dataset providing information relating to publicly funded community services for children, young people and adults. These services can include health centres, schools, mental health trusts, and health visiting services. The data collected includes personal and demographic information, diagnoses including long-term conditions and disabilities and care events plus screening activities. It has been developed to help achieve better outcomes for children, young people and adults. It provides data that will be used to commission services in a way that improves health, reduces inequalities, and supports service improvement and clinical quality. Prior to October 2017, the predecessor Children and Young Peoples Health Services (CYPHS) Data Set collected data for children and young people aged 0-18. The CSDS superseded the CYPHS data set to allow adult community data to be submitted, expanding the scope of the existing data set by removing the 0-18 age restriction. The structure and content of the CSDS remains the same as the previous CYPHS data set. Further information about the CYPHS and related statistical reports is available in the related links below. References to children and young people covers records submitted for 0-18 year olds and references to adults covers records submitted for those aged over 18. Where analysis for both groups have been combined, this is referred to as all patients. These statistics are classified as experimental and should be used with caution. Experimental statistics are new official statistics undergoing evaluation. They are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. More information about experimental statistics can be found on the UK Statistics Authority website. We hope this information is helpful and would be grateful if you could spare a couple of minutes to complete a short customer satisfaction survey. Please use the survey in the related links to provide us with any feedback or suggestions for improving the report.