8 datasets found
  1. Unemployment rate in South Africa 2019-2024, by population group

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Unemployment rate in South Africa 2019-2024, by population group [Dataset]. https://www.statista.com/statistics/1129481/unemployment-rate-by-population-group-in-south-africa/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Africa
    Description

    In the second quarter of 2024, the unemployment rate among Black South Africans was 36.9 percent, marking a year-on-year change of 0.8 percent compared to the second quarter of 2023. On the other hand, the unemployment rate among white South Africans was 7.9 percent in the second quarter of 2024, with a 0.5 percent year-on-year change. Unemployment prevalent among youth and women The unemployment rate is the share of the labor force population that is unemployed, while the labor force includes individuals who are employed as well as those who are unemployed but looking for work. South Africa is struggling to absorb its youth into the job market. For instance, the unemployment rate among young South Africans aged 15-24 years reached a staggering 60.7 percent in the second quarter of 2023. Furthermore, women had higher unemployment rates than men. Since the start of 2016, the unemployment rate of women has been consistently more than that of men, reaching close to 36 percent compared to 30 percent, respectively. A new minimum wage and most paying jobs      In South Africa, a new minimum hourly wage went into effect on March 1, 2022. The minimum salary reached 23.19 South African rand per hour (1.44 U.S. dollars per hour), up from 21.69 South African rand per hour (1.35 U.S. dollars per hour) in 2021. In addition, the preponderance of employed South Africans worked between 40 and 45 hours weekly in 2021. Individuals holding Executive Management and Change Management jobs were the highest paid in the country, with salaries averaging 74,000 U.S. dollars per year.

  2. T

    South Africa Unemployment Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa Unemployment Rate [Dataset]. https://tradingeconomics.com/south-africa/unemployment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2000 - Jun 30, 2025
    Area covered
    South Africa
    Description

    Unemployment Rate in South Africa increased to 33.20 percent in the second quarter of 2025 from 32.90 percent in the first quarter of 2025. This dataset provides - South Africa Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. Unemployment rate in South Africa 2019-2024, by age group

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Unemployment rate in South Africa 2019-2024, by age group [Dataset]. https://www.statista.com/statistics/1129482/unemployment-rate-by-age-group-in-south-africa/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Africa
    Description

    In the fourth quarter of 2024, the unemployment rate in South Africa was 27.2 percent among workers aged 35 to 44 years. The figure decreased from 27.7 percent in the same quarter of the previous year. This age group corresponded to the largest share of the labor force participation in the country. Among young South Africans (15 to 24 years), the unemployment rate was at its highest, at 59.6 percent.

  4. y

    Youth Explorer

    • youthexplorer.org.za
    • community-explorer.co.za
    Updated Nov 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SALDRU (2024). Youth Explorer [Dataset]. https://youthexplorer.org.za/
    Explore at:
    Dataset updated
    Nov 22, 2024
    Authors
    SALDRU
    Area covered
    Provincial, Ward and Mainplace (suburb) demarcations, South Africa in National, Municipal
    Description

    Explore, visualise and interact with youth-centered data. Includes data on poverty, education, employment, and demographics.

  5. Total population of South Africa 2023, by province

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of South Africa 2023, by province [Dataset]. https://www.statista.com/statistics/1112169/total-population-of-south-africa-by-province/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    South Africa
    Description

    As of 2023, South Africa's population increased and counted approximately 62.3 million inhabitants in total, of which the majority inhabited Gauteng, KwaZulu-Natal, and the Western-Eastern Cape. Gauteng (includes Johannesburg) is the smallest province in South Africa, though highly urbanized with a population of over 16 million people according to the estimates. Cape Town, on the other hand, is the largest city in South Africa with nearly 3.43 million inhabitants in the same year, whereas Durban counted 3.12 million citizens. However, looking at cities including municipalities, Johannesburg ranks first. High rate of young population South Africa has a substantial population of young people. In 2024, approximately 34.3 percent of the people were aged 19 years or younger. Those aged 60 or older, on the other hand, made-up over 10 percent of the total population. Distributing South African citizens by marital status, approximately half of the males and females were classified as single in 2021. Furthermore, 29.1 percent of the men were registered as married, whereas nearly 27 percent of the women walked down the aisle. Youth unemployment Youth unemployment fluctuated heavily between 2003 and 2022. In 2003, the unemployment rate stood at 36 percent, followed by a significant increase to 45.5 percent in 2010. However, it fluctuated again and as of 2022, over 51 percent of the youth were registered as unemployed. Furthermore, based on a survey conducted on the worries of South Africans, some 64 percent reported being worried about employment and the job market situation.

  6. Total population of South Africa 2024, by age group

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of South Africa 2024, by age group [Dataset]. https://www.statista.com/statistics/1116077/total-population-of-south-africa-by-age-group/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    South Africa
    Description

    As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated South Africa’s yearly population growth has been fluctuating since 2013, with the growth rate dropping below the world average in 2024. The majority of people lived in the borders of Gauteng, the smallest of the nine provinces in terms of land area. The number of people residing there amounted to 16.6 million in 2023. Although the Western Cape was the third-largest province, the city of Cape Town had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the fourth quarter of 2024, the unemployment rate reached close to 60 percent and 384 percent among people aged 15-24 and 25–34 years, respectively. In the same period, some 27 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 74.3 percent.

  7. e

    Replication Data for: Chapters 2, 3, 4 & 5 of "Essays on Informal versus...

    • b2find.eudat.eu
    Updated Apr 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Replication Data for: Chapters 2, 3, 4 & 5 of "Essays on Informal versus Formal Economy Choices" - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/52102baf-8bec-50e7-8304-3a2d6314a83f
    Explore at:
    Dataset updated
    Apr 27, 2023
    Description

    The informal economy is associated with the vulnerability and the poverty of workers. The dissertation’s main objective was to examine the main determinants of the informal economy to inform policymakers on the best approach to tackle it. This thesis’s novelty stems from the empirical evidence it offers on the main strategies used so far to tackle informality while considering the African continent’s specificities. We approach these preoccupations by asking the following questions: 1.Does local government regulation of the informal sector reduce informal entrepreneurship? And what are the potential unwanted consequences of such a stricter approach towards informality? 2. Do the perceived benefits from the formal financial sector motivate firms to be tax compliant? And does the existence of informal finance mitigate that effect? 3. Do small firms benefit from formalisation? And what other measures can enhance those potential benefits? 4. Does an employment tax incentive for young people increase their likelihood to be employed and formally employed? Chapter 2 exploits a unique regulatory framework of the informal sector in South-Africa, to estimate the effects of trading permits in the informal sector. We rely on individual panel data and municipality laws to show that a mandatory trading permit in the informal sector reduces informal entrepreneurship, particularly in the trading sector. To provide a causal effect of these regulations, we apply a difference in difference strategy. We use data bought from Sabinet Legal platform and data from National Income Dynamics Study in south-Africa. Chapter 3 investigates the effect of low costs of banks on small firms compliance with value-added tax, profit tax and local tax. This chapter equally explores the mitigating impact of informal finance on the role of low costs of banks in small firms’ tax compliance. We estimate a recursive trivariate probit model that simultaneously estimates an equation of tax compliance, an equation of informal finance, and an equation of low costs of banks. The data used is the Small Business ICT Access and Usage Survey 2011-2012 after a request to the University of Cape Town. Chapter 4 studies the impacts of formalization for micro and small firms on a range of outcomes for several Sub-Saharan countries. More specifically, it explores the effects of formalization on firms’ performance, export, access to trade credit, and loans from banks. It equally assesses whether receiving support from incubators and training enhance the benefits and or mitigate the potentially adverse effects for micro firms.The data used is the Small Business ICT Access and Usage Survey 2011-2012 after a request to the University of Cape Town. We adopt an endogenous switching probit model to estimate the impacts on a firm’s performance, exports, and access to trade credit and loans from banks. Chapter 5 investigates the effect of an Employment Tax Incentive (ETI) on youths’ employment and formal employment in South-Africa. The ETI lowers the cost that employers face when hiring youth. We adopt a difference-in-difference strategy to estimate the impact on employment and formal employment. We use data the NIDS data in South-Africa after a request to data first.

  8. i

    Khayelitsha Mitchell's Plain Survey 2000 - South Africa

    • dev.ihsn.org
    • datacatalog.ihsn.org
    • +2more
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2019). Khayelitsha Mitchell's Plain Survey 2000 - South Africa [Dataset]. https://dev.ihsn.org/nada/catalog/73279
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    2000
    Area covered
    South Africa
    Description

    Abstract

    In the year 2000 a small team of social scientists from the Universities of Cape Town and Michigan collaborated on designing a survey with a special focus on labour market issues as a precursor to a Cape Area Panel Study with a special focus on youth planned for the year 2002. After much debate and taking due cognisance of time and budget constraints the team decided to target the magisterial district of Mitchell’s Plain within the Cape Metropole for the survey.

    This decision was informed by data gleaned from the 1996 census which revealed that Mitchell’s Plain – demarcated a magisterial district in 1986 – contained almost thirty percent of the population in the Cape Metropolitan Council area. It straddled the two cities of Cape Town and Tygerberg and housed nearly 74% of the African and over 20% of the ‘coloured’ metropolitan population. It included the three established African townships of Langa, Gugulethu and Nyanga as well as informal settlements such as Crossroads and Browns Farm. It also included Khayelitsha an African township proclaimed in the early 1980s with the first houses being built in 1986. The 1996 census had recorded high unemployment rates of over 44%, for Africans and over 20% for Coloured people.

    Geographic coverage

    The survey covers the Khayelitsha and Mitchell's Plain areas of Cape Town, South Africa.

    Analysis unit

    The unit of analysis for this survey includes households and individuals.

    Universe

    The survey covers the African and Coloured populations of the Khayelitsha and Mitchell's Plain areas of Cape Town.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample was designed to represent all adults (18 years of age and older) in the Mitchell’s Plain Magisterial district. As discussed above, the most cost-efficient method of interviewing residents of such a large area is to use a two-stage cluster sample. The first stage of this sample entails selecting clusters of households and the second stage entails the selection of the households themselves. For our clusters of households, we relied on the Enumerator Areas as defined by Statistics South Africa for the 1996 Population Census. These Enumerator Areas are neighbourhoods of roughly 50 to 200 households. They are drawn up by the Chief Directorate of Demography at Statistics South Africa. This directorate is responsible for developing and maintaining a GIS system that provides the maps that are used for conducting the five-yearly national population census (Statistics South Africa, 2001:42-44). Although Enumerator Area boundaries do not cross municipal boundaries, they do not correspond to any other administrative demarcations such as voting wards. Enumerator Areas are designed to be homogeneous with respect to housing type and size. For example, Enumerator Area boundaries within the Mitchell’s Plain Magisterial District do not usually cut across different types of settlements such as squatter camps, site and service settlements, hostels, formal council estates or privately built estates. Instead, each Enumerator Area is homogeneous with respect to any one of these housing types.

    The method of selection used was that of Probability Proportional to Size (PPS). The measure of size being the number of households in each Enumerator Area as measured by the 1996 Population Census. This method was chosen as it provides the most efficient way to obtain equal subsample sizes across two stages of selection, i.e. we are able to select the Enumerator Areas and then select from each Enumerator Area a constant number of households for all Enumerator Areas in the sample. The sample is implicitly stratified by location and by housing type.

    A more detailed description of the sampling method and procedure for this survey can be found in the sampling method document available through this site under Other Study Materials.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The household questionnaire: Was aimed at establishing the household roster with the usual questions on age, gender and relationships. It was divided into two sections covering those aged 18 and older and those younger than 18. For the latter a separate set of questions covering education, health and work status was included.

    The adult questionnaire: Was aimed to fit the international standard approach on the labour force by allocating the labour market status of ‘employee’ to all those ‘at work’ (for profit or family gain, in cash or in kind). One of the innovative aspects of the survey was that respondents were asked about all income-earning activities. In other words, they were not allocated into particular labour market categories during the process of the interview.

    The adult questionnaire was divided into 13 sections:

    • Section A on education and other characteristics covered age, racial classification, educational attainment, language, religion and health. • Section B on migration covered place of origin, relocation and destination. • Section C on intergenerational mobility aimed at capturing parental influence on the respondent. • Section D on employment history aimed at capturing the respondent’s work history. • Section E on wage employment attempted to capture respondents working for a wage or salary whether full-time, part-time, in the formal sector or the informal sector including those who had more than one job. • Section F on unemployment included questions on job search • Section G on self-employment included a question on more than one economic activity and the frequency of self-employment. • Section H on non-labour force participants was aimed at refining work status. • Section I on casual work aimed to capture not only those in irregular/short term employment but also people who might have more than one job. • Section J on helping other people with their business for gain was aimed at identifying respondents who assist others from time to time but who might not regard themselves as ‘working’. • Section K on reservation wages attempted to establish the lowest wage at which a respondent would accept work. • Section L on savings, borrowing and grants and investment income attempted to capture income derived from sources other than work • Section M on perceptions of distributive justice posed a number of attitudinal questions.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Unemployment rate in South Africa 2019-2024, by population group [Dataset]. https://www.statista.com/statistics/1129481/unemployment-rate-by-population-group-in-south-africa/
Organization logo

Unemployment rate in South Africa 2019-2024, by population group

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 3, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
South Africa
Description

In the second quarter of 2024, the unemployment rate among Black South Africans was 36.9 percent, marking a year-on-year change of 0.8 percent compared to the second quarter of 2023. On the other hand, the unemployment rate among white South Africans was 7.9 percent in the second quarter of 2024, with a 0.5 percent year-on-year change. Unemployment prevalent among youth and women The unemployment rate is the share of the labor force population that is unemployed, while the labor force includes individuals who are employed as well as those who are unemployed but looking for work. South Africa is struggling to absorb its youth into the job market. For instance, the unemployment rate among young South Africans aged 15-24 years reached a staggering 60.7 percent in the second quarter of 2023. Furthermore, women had higher unemployment rates than men. Since the start of 2016, the unemployment rate of women has been consistently more than that of men, reaching close to 36 percent compared to 30 percent, respectively. A new minimum wage and most paying jobs      In South Africa, a new minimum hourly wage went into effect on March 1, 2022. The minimum salary reached 23.19 South African rand per hour (1.44 U.S. dollars per hour), up from 21.69 South African rand per hour (1.35 U.S. dollars per hour) in 2021. In addition, the preponderance of employed South Africans worked between 40 and 45 hours weekly in 2021. Individuals holding Executive Management and Change Management jobs were the highest paid in the country, with salaries averaging 74,000 U.S. dollars per year.

Search
Clear search
Close search
Google apps
Main menu