Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in the United States of America (USAUCSFRCONDOSMSAMID) from Jan 2000 to Sep 2025 about 1-unit structures, family, residential, housing, indexes, and USA.
Facebook
TwitterHello my fellow data enthusiasts! I'm back!
My journey into the world of real estate data has been nothing short of exciting, and I’m thrilled to share the fruits of that adventure with you all. After spending a few weeks tinkering with APIs, parsing responses, and structuring data into something meaningful, I'm excited to present the CLEANEST Zillow Dataset you've every seen!
Analysts will be able to get actionable insights and a structured view into the fascinating world of property data.
Here’s the story behind the dataset: Zillow’s data provides a treasure trove of information, but raw responses can be messy with nested structures, and scattered details. So, I rolled up my sleeves and built a robust pipeline to extract key data points from each response. From property details to price history, every piece of information was carefully categorized and mapped into logical fields. My goal was to create a dataset that feels as polished and user-friendly as the apps we rely on daily.
What Makes This Dataset Special?
If you have any questions, feedback, or just want to geek out about data, don’t hesitate to connect with me on LinkedIn or here on Kaggle. Let’s build something awesome together!
NOTES: I use Google's Cloud Composer to request this data and due to costs, I'm only grabbing data for properties that were recently put up for sale or sold within the day of execution. If you're looking for historical data, please reach out!
Disclaimer: This dataset is intended for non-commercial, academic purposes and does not infringe upon Zillow's intellectual property rights. For full details on Zillow's terms, please visit Zillow's Terms of Use.
Dive in, explore, and let me know what you think. Happy analyzing!
Other Datasets: - Spotify
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Reference: https://www.zillow.com/research/zhvi-methodology/
In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.
The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.
The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).
For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller
Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.
Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.
The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.
Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
These datasets contain comprehensive information on current real estate listings in Washington, D.C., obtained from Zillow, and offer a detailed overview of the Washington, D.C. housing market as of 5th June 2024.
The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.
The full dataset includes all details for each listing for sale, such as:
With over 5,000 current listings, this dataset is perfect for in-depth analysis of the Washington, D.C. housing market and the Washington, D.C. real estate scene. Potential applications include:
Whether you're a real estate professional, market analyst, data scientist, or simply interested in the Washington, D.C., housing market, this dataset offers a wealth of information to explore. You can begin investigating and discovering insights into Washington, D.C. real estate today.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Gain a complete view of the real estate market with our Zillow datasets. Track price trends, rental/sale status, and price per square foot with the Zillow Price History dataset and explore detailed listings with prices, locations, and features using the Zillow Properties Listing dataset. Over 134M records available Price starts at $250/100K records Data formats are available in JSON, NDJSON, CSV, XLSX and Parquet. 100% ethical and compliant data collection Included datapoints:
Zpid
City
State
Home Status
Street Address
Zipcode
Home Type
Living Area Value
Bedrooms
Bathrooms
Price
Property Type
Date Sold
Annual Homeowners Insurance
Price Per Square Foot
Rent Zestimate
Tax Assessed Value
Zestimate
Home Values
Lot Area
Lot Area Unit
Living Area
Living Area Units
Property Tax Rate
Page View Count
Favorite Count
Time On Zillow
Time Zone
Abbreviated Address
Brokerage Name
And much more
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in New Jersey (NJUCSFRCONDOSMSAMID) from Jan 2000 to Oct 2025 about 1-unit structures, NJ, family, residential, housing, indexes, and USA.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset contains detailed information on current real estate listings in Houston, Texas, sourced from Zillow, and provides a comprehensive snapshot of the Houston housing market as of 5th June 2024.
The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.
The data includes key details for each listing for sale, such as:
With 25,900 current listings, this dataset is ideal for in-depth analysis of the Houston housing market and the Houston real estate market. Potential use cases include:
Whether you're a real estate professional, market researcher, data scientist, or just curious about the Houston housing market, this dataset provides a wealth of information to explore. You can start investigating Houston real estate today.
Facebook
TwitterThis dataset comes from Zillow and provides a comprehensive look at U.S. housing market trends from 2018 to May 2024. It includes detailed data on median home values, average days outstanding for property sales, and their impact on reducing prices in several cities. This dataset is ideal for analyzing the correlation between home values, time to market, and price adjustments, offering valuable insights for real estate professionals, economists, and data analysts interested in the dynamics of the U.S. housing market.
About the license, taken from the Zillow website:
“For research and academic projects, we provide the following metrics that have more flexible Terms of Use regarding data storage and manipulation – https://www.zillow.com/research/data/”
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in Massachusetts (MAUCSFRCONDOSMSAMID) from Jan 2000 to Oct 2025 about MA, 1-unit structures, family, residential, housing, indexes, and USA.
Facebook
TwitterSearchable online database of homes for sale, rent, and not currently on the market, with value estimator, market report, and real-estate trend tool. Users search by location (neighborhood, city, zip code, address) and parameters, such as property specifications, pricing, and keyword. Registration allows for favorite listing saving, customized property e-mail alerts, and other privileges. Users can also access real-estate listing data through an API.
Facebook
TwitterZillow reigns supreme in the U.S. real estate website landscape, attracting a staggering ***** million monthly visits in 2024. This figure dwarfs its closest competitor, Realtor.com, which garnered less than half of Zillow's traffic. Online platforms are extremely popular, with the majority of homebuyers using a mobile device during the buying process. The rise of Zillow Founded in 2006, the Seattle-headquartered proptech Zillow has steadily grown over the years, establishing itself as the most popular U.S. real estate website. In 2023, the listing platform recorded about *** million unique monthly users across its mobile applications and website. Despite holding an undisputed position as a market leader, Zillow's revenue has decreased since 2021. A probable cause for the decline is the plummeting of housing transactions and the negative housing sentiment. Performance and trends in the proptech market The proptech market has shown remarkable performance, with companies like Opendoor and Redfin experiencing significant stock price increase in 2023. This growth is particularly notable in the residential brokerage segment. Meanwhile, major players in proptech fundraising, such as Fifth Wall and Hidden Hill Capital, have raised billions in direct investment, further fueling the sector's development. As technology continues to reshape the real estate industry, online platforms like Zillow are likely to play an increasingly crucial role in how people search for and purchase homes. (1477916, 1251604)
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
U.S. Zillow Home Value Index - Historical chart and current data through 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in Florida (FLUCSFRCONDOSMSAMID) from Jan 2000 to Oct 2025 about 1-unit structures, family, residential, FL, housing, indexes, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in Michigan (MIUCSFRCONDOSMSAMID) from Jan 2000 to Oct 2025 about 1-unit structures, MI, family, residential, housing, indexes, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in the District of Columbia (DCUCSFRCONDOSMSAMID) from Jan 2000 to Oct 2025 about DC, 1-unit structures, family, residential, housing, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Maine - Zillow Home Value Index - Historical chart and current data through 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Michigan - Zillow Home Value Index - Historical chart and current data through 2025.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
This dataset provides a comprehensive look at real estate listings across various cities in California, collected from Zillow ethically. The data represents a snapshot of the market, showcasing properties for sale, including condos and houses. It serves as a valuable resource for understanding market trends, regional demand, and pricing distributions across the Golden State.
The California Real Estate Listings Dataset is ideal for various data science projects and analyses, particularly in the realms of market analysis, trend forecasting, and regional economic studies. The data can serve as a foundation for predictive modeling, clustering for market segmentation, and comparative studies between different locales. Note: This data is intended for educational purposes only.
This dataset was ethically mined, ensuring that sensitive information, including exact addresses and broker names, was omitted to respect privacy. This consideration helps maintain ethical standards while providing valuable insights.
We extend our gratitude to Zillow which is the source of the data and which made this dataset possible. We also thank Florian Schmidinger for the image of a California property, which can be viewed here, enhancing our dataset's presentation.
Facebook
TwitterVITAL SIGNS INDICATOR List Rents (EC9)
FULL MEASURE NAME List Rents
LAST UPDATED October 2016
DESCRIPTION List rent refers to the advertised rents for available rental housing and serves as a measure of housing costs for new households moving into a neighborhood, city, county or region.
DATA SOURCE real Answers (1994 – 2015) no link
Zillow Metro Median Listing Price All Homes (2010-2016) http://www.zillow.com/research/data/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) List rents data reflects median rent prices advertised for available apartments rather than median rent payments; more information is available in the indicator definition above. Regional and local geographies rely on data collected by real Answers, a research organization and database publisher specializing in the multifamily housing market. real Answers focuses on collecting longitudinal data for individual rental properties through quarterly surveys. For the Bay Area, their database is comprised of properties with 40 to 3,000+ housing units. Median list prices most likely have an upward bias due to the exclusion of smaller properties. The bias may be most extreme in geographies where large rental properties represent a small portion of the overall rental market. A map of the individual properties surveyed is included in the Local Focus section.
Individual properties surveyed provided lower- and upper-bound ranges for the various types of housing available (studio, 1 bedroom, 2 bedroom, etc.). Median lower- and upper-bound prices are determined across all housing types for the regional and county geographies. The median list price represented in Vital Signs is the average of the median lower- and upper-bound prices for the region and counties. Median upper-bound prices are determined across all housing types for the city geographies. The median list price represented in Vital Signs is the median upper-bound price for cities. For simplicity, only the mean list rent is displayed for the individual properties. The metro areas geography rely upon Zillow data, which is the median price for rentals listed through www.zillow.com during the month. Like the real Answers data, Zillow's median list prices most likely have an upward bias since small properties are underrepresented in Zillow's listings. The metro area data for the Bay Area cannot be compared to the regional Bay Area data. Due to afore mentioned data limitations, this data is suitable for analyzing the change in list rents over time but not necessarily comparisons of absolute list rents. Metro area boundaries reflects today’s metro area definitions by county for consistency, rather than historical metro area boundaries.
Due to the limited number of rental properties surveyed, city-level data is unavailable for Atherton, Belvedere, Brisbane, Calistoga, Clayton, Cloverdale, Cotati, Fairfax, Half Moon Bay, Healdsburg, Hillsborough, Los Altos Hills, Monte Sereno, Moranga, Oakley, Orinda, Portola Valley, Rio Vista, Ross, San Anselmo, San Carlos, Saratoga, Sebastopol, Windsor, Woodside, and Yountville.
Inflation-adjusted data are presented to illustrate how rents have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself. Percent change in inflation-adjusted median is calculated with respect to the median price from the fourth quarter or December of the base year.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Zillow Home Value Index (ZHVI) for All Homes Including Single-Family Residences, Condos, and CO-OPs in the United States of America (USAUCSFRCONDOSMSAMID) from Jan 2000 to Sep 2025 about 1-unit structures, family, residential, housing, indexes, and USA.