21 datasets found
  1. Zillow Home Value Index (Updated Monthly)

    • kaggle.com
    zip
    Updated Dec 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Mulla (2025). Zillow Home Value Index (Updated Monthly) [Dataset]. https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
    Explore at:
    zip(275560 bytes)Available download formats
    Dataset updated
    Dec 21, 2025
    Authors
    Rob Mulla
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Reference: https://www.zillow.com/research/zhvi-methodology/

    Official Background

    In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.

    The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.

    The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).

    For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller

    Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.

    Underlying Data

    Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.

    The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.

    Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...

  2. T

    Vital Signs: Home Prices - Bay Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices - Bay Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-Bay-Area-2022-/2uf4-6aym
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Oct 26, 2022
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  3. F

    S&P Cotality Case-Shiller CA-Los Angeles Home Price Index

    • fred.stlouisfed.org
    json
    Updated Dec 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P Cotality Case-Shiller CA-Los Angeles Home Price Index [Dataset]. https://fred.stlouisfed.org/series/LXXRSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    Los Angeles, California
    Description

    Graph and download economic data for S&P Cotality Case-Shiller CA-Los Angeles Home Price Index (LXXRSA) from Jan 1987 to Oct 2025 about Los Angeles, CA, HPI, housing, price index, indexes, price, and USA.

  4. d

    All-Transactions House Price Index for Connecticut

    • catalog.data.gov
    • fred.stlouisfed.org
    • +1more
    Updated Jan 17, 2026
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2026). All-Transactions House Price Index for Connecticut [Dataset]. https://catalog.data.gov/dataset/all-transactions-house-price-index-for-connecticut
    Explore at:
    Dataset updated
    Jan 17, 2026
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    The FHFA House Price Index (FHFA HPI®) is the nation’s only collection of public, freely available house price indexes that measure changes in single-family home values based on data from all 50 states and over 400 American cities that extend back to the mid-1970s. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data. ​ What does the FHFA HPI represent? The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975. The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas. U.S. Federal Housing Finance Agency, All-Transactions House Price Index for Connecticut [CTSTHPI], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/CTSTHPI, August 2, 2023.

  5. Zillow Economics Data

    • kaggle.com
    zip
    Updated Jan 24, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2018). Zillow Economics Data [Dataset]. https://www.kaggle.com/zillow/zecon
    Explore at:
    zip(535524759 bytes)Available download formats
    Dataset updated
    Jan 24, 2018
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    Context

    Zillow's Economic Research Team collects, cleans and publishes housing and economic data from a variety of public and proprietary sources. Public property record data filed with local municipalities -- including deeds, property facts, parcel information and transactional histories -- forms the backbone of our data products, and is fleshed out with proprietary data derived from property listings and user behavior on Zillow.

    The large majority of Zillow's aggregated housing market and economic data is made available for free download at zillow.com/data.

    Content

    Variable Availability:

    Zillow Home Value Index (ZHVI): A smoothed seasonally adjusted measure of the median estimated home value across a given region and housing type. A dollar denominated alternative to repeat-sales indices. Find a more detailed methodology here: http://www.zillow.com/research/zhvi-methodology-6032/

    Zillow Rent Index (ZRI): A smoothed seasonally adjusted measure of the median estimated market rate rent across a given region and housing type. A dollar denominated alternative to repeat-rent indices. Find a more detailed methodology here: http://www.zillow.com/research/zillow-rent-index-methodology-2393/

    For-Sale Listing/Inventory Metrics: Zillow provides many variables capturing current and historical for-sale listings availability, generally from 2012 to current. These variables include median list prices and inventory counts, both by various property types. Variables capturing for-sale market competitiveness including share of listings with a price cut, median price cut size, age of inventory, and the days a listing spend on Zillow before the sale is final.

    Home Sales Metrics: Zillow provides data on sold homes including median sale price by various housing types, sale counts (methodology here: http://www.zillow.com/research/home-sales-methodology-7733/), and a normalized view of sale volume referred to as turnover. The prevalence of foreclosures is also provided as ratio of the housing stock and the share of all sales in which the home was previously foreclosed upon.

    For-Rent Listing Metrics: Zillow provides median rents prices and median rent price per square foot by property type and bedroom count.

    Housing type definitions:

    All Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.

    Condo/Co-op: Condominium and co-operative homes.

    Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not a condominiums or co-ops.

    Duplex/Triplex: Housing units in buildings with 2 or 3 housing units.

    Tiers: By metro, we determine price tier cutoffs that divide the all homes housing stock into thirds using the full distribution of estimated home values. We then estimate real estate metrics within the property sets, Bottom, Middle, and Top, defined by these cutoffs. When reported at the national level, all Bottom Tier homes defined at the metro level are pooled together to form the national bottom tier. The same holds for Middle and Top Tier homes.

    Regional Availability:

    Zillow metrics are reported for common US geographies including Nation, State, Metro (2013 Census Defined CBSAs), County, City, ZIP code, and Neighborhood.

    We provide a crosswalk between colloquial Zillow region names and federally defined region names and linking variables such as County FIPS codes and CBSA codes. Cities and Neighborhoods do not match standard jurisdictional boundaries. Zillow city boundaries reflect mailing address conventions and so are often visually similar to collections of ZIP codes. Zillow neighborhood boundaries can be found here.

    Suppression Rules: To ensure reliability of reported values the Zillow Economic Research team applies suppression rules triggered by low sample sizes and excessive volatility. These rules are customized to the metric and region type and explain most missingness found in the provided datasets.

    Additional Data Products

    The following data products and more are available for free download exclusively at [Zillow.com/Data][1]:

    • Zillow Home Value Forecast
    • Zillow Rent Forecast
    • Negative Equity (the share of mortgaged properties worth less than mortgage balance)
    • Zillow Home Price Expectations Survey
    • Zillow Housing Aspirations Report
    • Zillow Rising Sea Levels Research
    • Cash Buyers Time Series
    • Buy vs. Rent Breakeven Horizon
    • Mortgage Affordability, Rental Affordability, Price-to-Income Ratio
    • Conventional 30-year Fixed Mortgage Rate, Weekly Time Series
    • Jumbo 30-year Fixed Mortgage Rates, Weekly Time Series

    Acknowledgements

    The mission of the Zillow Economic Research Team is to be the most open, authoritative source for timely and accurate housing data and unbiased insight. We...

  6. F

    S&P Cotality Case-Shiller IL-Chicago Home Price Index

    • fred.stlouisfed.org
    json
    Updated Jan 27, 2026
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2026). S&P Cotality Case-Shiller IL-Chicago Home Price Index [Dataset]. https://fred.stlouisfed.org/series/CHXRSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 27, 2026
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    Illinois, Chicago
    Description

    Graph and download economic data for S&P Cotality Case-Shiller IL-Chicago Home Price Index (CHXRSA) from Jan 1987 to Nov 2025 about Chicago, IN, WI, IL, HPI, housing, price index, indexes, price, and USA.

  7. T

    Vital Signs: Home Prices by Zip Code (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Oct 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Zip Code (2022) [Dataset]. https://data.bayareametro.gov/w/t839-7cab/_variation_?cur=zt6r6yE_rVf&from=root
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Oct 26, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  8. Vital Signs: Home Prices – by metro

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Sep 24, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2019). Vital Signs: Home Prices – by metro [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Home-Prices-by-metro/7ksc-i6kn
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Sep 24, 2019
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    VITAL SIGNS INDICATOR Home Prices (EC7)

    FULL MEASURE NAME Home Prices

    LAST UPDATED August 2019

    DESCRIPTION Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE Zillow Median Sale Price (1997-2018) http://www.zillow.com/research/data/

    Bureau of Labor Statistics: Consumer Price Index All Urban Consumers Data Table (1997-2018; specific to each metro area) http://data.bls.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Median housing price estimates for the region, counties, cities, and zip code come from analysis of individual home sales by Zillow. The median sale price is the price separating the higher half of the sales from the lower half. In other words, 50 percent of home sales are below or above the median value. Zillow defines all homes as single-family residential, condominium, and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that you own in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums where the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Home sales prices are not reliably available for Houston, because Texas is a non-disclosure state. For more information on non-disclosure states, see: http://www.zillow.com/blog/chronicles-of-data-collection-ii-non-disclosure-states-3783/

    Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of CPI itself.

  9. T

    Vital Signs: Home Prices by Metro Area (2022)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Vital Signs: Home Prices by Metro Area (2022) [Dataset]. https://data.bayareametro.gov/Economy/Vital-Signs-Home-Prices-by-Metro-Area-2022-/rgc5-3kcq
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 2, 2022
    Description

    VITAL SIGNS INDICATOR
    Home Prices (EC7)

    FULL MEASURE NAME
    Home Prices

    LAST UPDATED
    December 2022

    DESCRIPTION
    Home prices refer to the cost of purchasing one’s own house or condominium. While a significant share of residents may choose to rent, home prices represent a primary driver of housing affordability in a given region, county or city.

    DATA SOURCE
    Zillow: Zillow Home Value Index (ZHVI) - http://www.zillow.com/research/data/
    2000-2021

    California Department of Finance: E-4 Historical Population Estimates for Cities, Counties, and the State - https://dof.ca.gov/forecasting/demographics/estimates/
    2000-2021

    US Census Population and Housing Unit Estimates - https://www.census.gov/programs-surveys/popest.html
    2000-2021

    Bureau of Labor Statistics: Consumer Price Index - http://data.bls.gov
    2000-2021

    US Census ZIP Code Tabulation Areas (ZCTAs) - https://www.census.gov/programs-surveys/geography/guidance/geo-areas/zctas.html
    2020 Census Blocks

    CONTACT INFORMATION
    vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    Housing price estimates at the regional-, county-, city- and zip code-level come from analysis of individual home sales by Zillow based upon transaction records. Zillow Home Value Index (ZHVI) is a smoothed, seasonally adjusted measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. ZHVI is computed from public record transaction data as reported by counties. All standard real estate transactions are included in this metric, including REO sales and auctions. Zillow makes a substantial effort to remove transactions not typically considered a standard sale. Examples of these include bank takeovers of foreclosed properties, title transfers after a death or divorce and non arms-length transactions. Zillow defines all homes as single-family residential, condominium and co-operative homes with a county record. Single-family residences are detached, which means the home is an individual structure with its own lot. Condominiums are units that can be owned in a multi-unit complex, such as an apartment building. Co-operative homes are slightly different from condominiums in that the homeowners own shares in the corporation that owns the building, not the actual units themselves.

    For metropolitan area comparison values, the Bay Area metro area’s median home sale price is the population-weighted average of the nine counties’ median home prices. Data is adjusted for inflation using Bureau of Labor Statistics metropolitan statistical area (MSA)-specific series. Inflation-adjusted data are presented to illustrate how home prices have grown relative to overall price increases; that said, the use of the Consumer Price Index (CPI) does create some challenges given the fact that housing represents a major chunk of consumer goods bundle used to calculate CPI. This reflects a methodological tradeoff between precision and accuracy and is a common concern when working with any commodity that is a major component of the CPI itself.

  10. FHFA House Price Index

    • datalumos.org
    • openicpsr.org
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FHFA Housing (2025). FHFA House Price Index [Dataset]. http://doi.org/10.3886/E220325V1
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Federal Housing Finance Agencyhttps://www.fhfa.gov/
    Authors
    FHFA Housing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    FHFA House Price IndexThe FHFA House Price Index (FHFA HPI®) is a comprehensive​ collection of publicly available house price indexes that measure changes in single-family home values based on data that extend back to the mid-1970s from all 50 states and over 400 American cities. The FHFA HPI incorporates tens of millions of home sales and offers insights about house price fluctuations at the national, census division, state, metro area, county, ZIP code, and census tract levels. FHFA uses a fully transparent methodology based upon a weighted, repeat-sales statistical technique to analyze house price transaction data.What does the FHFA HPI represent?The FHFA HPI is a broad measure of the movement of single-family house prices. The FHFA HPI is a weighted, repeat-sales index, meaning that it measures average price changes in repeat sales or refinancings on the same properties. This information is obtained by reviewing repeat mortgage transactions on single-family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie Mac since January 1975.The FHFA HPI serves as a timely, accurate indicator of house price trends at various geographic levels. Because of the breadth of the sample, it provides more information than is available in other house price indexes. It also provides housing economists with an improved analytical tool that is useful for estimating changes in the rates of mortgage defaults, prepayments and housing affordability in specific geographic areas.

  11. Negative Equity in U.S. Housing Market

    • kaggle.com
    zip
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Negative Equity in U.S. Housing Market [Dataset]. https://www.kaggle.com/datasets/thedevastator/negative-equity-in-u-s-housing-market-2017-summa
    Explore at:
    zip(6592634 bytes)Available download formats
    Dataset updated
    Jan 10, 2023
    Authors
    The Devastator
    Description

    Negative Equity in U.S. Housing Market

    Measuring Home Values, Debt, and Credit Risk

    By Zillow Data [source]

    About this dataset

    This dataset, Negative Equity in the US Housing Market, provides an in-depth look into the negative equity occurring across the United States during this single quarter. Included are metrics such as total amount of negative equity in millions of dollars, total number of homes in negative equity, percentage of homes with mortgages that are in negative equity and more. These data points provide helpful insights into both regional and national trends regarding the prevalence and rate of home mortgage delinquency stemming from a diminishment of value from peak levels.

    Home types available for analysis include 'all homes', condos/co-ops, multifamily units containing five or more housing units as well as duplexes/triplexes. Additionally, Cash buyers rates for particular areas can also be determined by referencing this collection. Further metrics such as mortgage affordability rates and impacts on overall indebtedness are readily calculated using information related to Zillow's Home Value Index (ZHVI) forecast methodology and TransUnion data respectively.

    Other variables featured within this dataset include characteristics like region type (i.e city, county ..etc), size rank based on population values , percentage change in ZHVI since peak levels as well as loan-to-value ratio greater than 200 across all regions constituted herein (NE). Moreover Zillow's own Secondary Mortgage Market Survey data is utilized to acquire average mortgage quote rates while correlative Census Bureau NCHS median household income figures represent typical assessable proportions between wages and debt obligations . So whether you're looking to assess effects along metro lines or detailed buffering through zip codes , this database should prove sufficient for insightful explorations! Nonetheless users must strictly adhere to all conditions encompassed within Terms Of Use commitments put forth by our lead provider before accessing any resources included herewith

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    Research Ideas

    • Analyzing regional and state trends in negative equity: Analyze geographic differences in the percentage of mortgages “underwater”, total amount of negative equity, number of homes at least 90 days late, and other key indicators to provide insight into the factors influencing negative equity across regions, states and cities.
    • Tracking the recovery rate over time: Track short-term changes in numbers related to negative equity (e.g., region or area ZHVI Change from Peak) to monitor recovery rates over time as well as how different policy interventions are affecting homeownership levels in affected areas.
    • Exploring best practices for promoting housing affordability: Compare affordability metrics (e.g., mortgage payments, price-to-income ratios) across different geographic locations over time to identify best practices for empowering homeowners and promoting stability within the housing market while reducing local inequality impacts related to availability of affordable housing options and access to credit markets like mortgages/loans etc

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: NESummary_2017Q1_Public.csv | Column name | Description | |:------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------| | RegionType | The type of region (e.g., city, county, metro etc.) (String) | | City | Name of the city (String) | | County | Name of the county (String) | | State | Name of the state (String) | | Metro ...

  12. F

    S&P Cotality Case-Shiller CA-San Francisco Home Price Index

    • fred.stlouisfed.org
    json
    Updated Dec 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P Cotality Case-Shiller CA-San Francisco Home Price Index [Dataset]. https://fred.stlouisfed.org/series/SFXRSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    California, San Francisco
    Description

    Graph and download economic data for S&P Cotality Case-Shiller CA-San Francisco Home Price Index (SFXRSA) from Jan 1987 to Oct 2025 about San Francisco, HPI, CA, housing, price index, indexes, price, and USA.

  13. Housing Prices Dataset

    • kaggle.com
    zip
    Updated Jan 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2022). Housing Prices Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/housing-prices-dataset
    Explore at:
    zip(4740 bytes)Available download formats
    Dataset updated
    Jan 12, 2022
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">

    Description:

    A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?

    Acknowledgement:

    Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t a single & multiple feature.
    • Also evaluate the models & compare thier respective scores like R2, RMSE, etc.
  14. Zillow Rent Index, 2010-Present

    • kaggle.com
    zip
    Updated Mar 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zillow (2017). Zillow Rent Index, 2010-Present [Dataset]. https://www.kaggle.com/zillow/rent-index
    Explore at:
    zip(3535210 bytes)Available download formats
    Dataset updated
    Mar 3, 2017
    Dataset authored and provided by
    Zillowhttp://zillow.com/
    Description

    Context

    Zillow operates an industry-leading economics and analytics bureau led by Zillow’s Chief Economist, Dr. Stan Humphries. At Zillow, Dr. Humphries and his team of economists and data analysts produce extensive housing data and analysis covering more than 500 markets nationwide. Zillow Research produces various real estate, rental and mortgage-related metrics and publishes unique analyses on current topics and trends affecting the housing market.

    At Zillow’s core is our living database of more than 100 million U.S. homes, featuring both public and user-generated information including number of bedrooms and bathrooms, tax assessments, home sales and listing data of homes for sale and for rent. This data allows us to calculate, among other indicators, the Zestimate, a highly accurate, automated, estimated value of almost every home in the country as well as the Zillow Home Value Index and Zillow Rent Index, leading measures of median home values and rents.

    Content

    The Zillow Rent Index is the median estimated monthly rental price for a given area, and covers multifamily, single family, condominium, and cooperative homes in Zillow’s database, regardless of whether they are currently listed for rent. It is expressed in dollars and is seasonally adjusted. The Zillow Rent Index is published at the national, state, metro, county, city, neighborhood, and zip code levels.

    Zillow produces rent estimates (Rent Zestimates) based on proprietary statistical and machine learning models. Within each county or state, the models observe recent rental listings and learn the relative contribution of various home attributes in predicting prevailing rents. These home attributes include physical facts about the home, prior sale transactions, tax assessment information and geographic location as well as the estimated market value of the home (Zestimate). Based on the patterns learned, these models estimate rental prices on all homes, including those not presently for rent. Because of the availability of Zillow rental listing data used to train the models, Rent Zestimates are only available back to November 2010; therefore, each ZRI time series starts on the same date.

    Acknowledgements

    The rent index data was calculated from Zillow's proprietary Rent Zestimates and published on its website.

    Inspiration

    What city has the highest and lowest rental prices in the country? Which metropolitan area is the most expensive to live in? Where have rental prices increased in the past five years and where have they remained the same? What city or state has the lowest cost per square foot?

  15. F

    All-Transactions House Price Index for Los Angeles County, CA

    • fred.stlouisfed.org
    json
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Los Angeles County, CA [Dataset]. https://fred.stlouisfed.org/series/ATNHPIUS06037A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Los Angeles County, California
    Description

    Graph and download economic data for All-Transactions House Price Index for Los Angeles County, CA (ATNHPIUS06037A) from 1975 to 2024 about Los Angeles County, CA; Los Angeles; CA; HPI; housing; price index; indexes; price; and USA.

  16. U

    Average House Prices, Borough

    • find.data.gov.scot
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). Average House Prices, Borough [Dataset]. https://find.data.gov.scot/datasets/45915
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authority
    Area covered
    United Kingdom
    Description

    Average annual and quarterly house prices based on Land Registry data, by borough. Lower and Upper quartile prices are included in the table. Quarterly Lower Quartile data is taken from DCLG Table 583 up to Q3 2011. All other data is from Land Registry. Excluded from the above figures are sales at less than market price (e.g. Right To Buy), sales below PS1,000 and sales above PS20m. The "median" property price is determined by ranking all property prices in ascending order. The median is the mid-point of this ranking with 50 per cent of prices below the median and 50 per cent above The figures for the latest quarter are provisional and figures for all other quarters have been revised. Data from CLG Table numbers: 581, 582, 585 and 586. From the 1st of November 2012 DCLG no longer publishes this data at regional level. Now also includes monthly data from the Land Registry. Also available are Average house prices for London, by borough, ward, LSOA and MSOA, based on GLA calculations of Land Registry price paid datasets. Price Paid Datasets The full land registry price paid datasets are available to download here. This shows details of each house sale since 1995 in England and Wales. The files are broken down into smaller chunks to make it possible to open in Excel2010. The England and Wales files contain the following fields: unique_id price date Post code Property type Whether newbuild Freehold Address1 Town Local_authority County Record_status Year Month Quarter Region Country The London files contain the following fields: id (London) transaction_id Price Date_processed Quarter Month Year Year_month Post_code Property_type Whether_new Tenure Address1 Address2 Address3 Address4 Town Local_authority County Record_status Post_code_clean Inner_outer Borough_code Borough_name Ward_code Ward_name MSOA11 LSOA11 OA11 Download (Beware: large file sizes): England and Wales 1995-2013 (Zip) 911MB London 1995-2013 (Zip) 190MB NB Files correct to end of March 2014. https://www.gov.uk/government/statistical-data-sets/house-price-index-background-tables https://www.gov.uk/government/statistical-data-sets/live-tables-on-housing-market-and-house-prices

  17. F

    All-Transactions House Price Index for Florida

    • fred.stlouisfed.org
    json
    Updated Nov 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Florida [Dataset]. https://fred.stlouisfed.org/series/FLSTHPI
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Florida
    Description

    Graph and download economic data for All-Transactions House Price Index for Florida (FLSTHPI) from Q1 1975 to Q3 2025 about appraisers, FL, HPI, housing, price index, indexes, price, and USA.

  18. Data from: Housing Price Prediction

    • kaggle.com
    zip
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rohan (2024). Housing Price Prediction [Dataset]. https://www.kaggle.com/datasets/rohanparekh/housing-price-prediction
    Explore at:
    zip(134688 bytes)Available download formats
    Dataset updated
    Apr 29, 2024
    Authors
    rohan
    Description

    Real Estate Prices Dataset This dataset comprises information on 4,600 real estate transactions, providing a detailed snapshot of the housing market in various locations. Each record captures the characteristics of a house, its surroundings, and transaction details from transactions that occurred around May 2, 2014. The dataset includes the following fields:

    date: The date of the transaction. price: The sale price of the property (in USD). bedrooms: The number of bedrooms. bathrooms: The number of bathrooms, represented in half-baths (e.g., 1.5 indicates one full bath and one half bath). sqft_living: The square footage of the home's living area. sqft_lot: The square footage of the lot. floors: The number of floors. waterfront: A binary indicator for whether the property is on the waterfront (1) or not (0). view: An index from 0 to 4 indicating the quality of the view. condition: An index from 1 to 5 on the condition of the property. sqft_above: The square footage of the house apart from the basement. sqft_basement: The square footage of the basement. yr_built: The year the property was built. yr_renovated: The year of the last renovation. street: The street address of the property. city: The city in which the property is located. statezip: The state and ZIP code. country: The country of the property.

    This dataset can be particularly useful for projects involving real estate market analysis, price prediction models, and economic research related to housing trends. Researchers and enthusiasts can explore aspects such as the impact of property characteristics on price, trends over time, and geographical price variations.

  19. House Price Prediction Treated Dataset

    • kaggle.com
    zip
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vinicius Araujo (2024). House Price Prediction Treated Dataset [Dataset]. https://www.kaggle.com/datasets/aravinii/house-price-prediction-treated-dataset
    Explore at:
    zip(286105 bytes)Available download formats
    Dataset updated
    Oct 22, 2024
    Authors
    Vinicius Araujo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PLEASE UPVOTE IF YOU LIKE THIS CONTENT! 😍

    Same dataset as "House Sales in King County, USA", but with treated content and with a split version (train-test) allowing direct use in machine learning models.

    We have 14 columns in the dataset, as it follows:

    • date: Date of the home sale
    • price: Price of each home sold
    • bedrooms: Number of bedrooms
    • bathrooms: Number of bathrooms
    • living_in_m2: Square meters of the apartments interior living space
    • nice_view: A flag that indicates the view's quality of a property
    • perfect_condition: A flag that indicates the maximum index of the apartment condition
    • grade: An index from 1 to 5, where 1 falls short of quality level and 5 have a high quality level of construction and design
    • has_basement: A flag indicating whether or not a property has a basement
    • renovated: A flag if the property was renovated
    • has_lavatory: Check for the presence of these incomplete/secondary bathrooms (bathtub, sink, toilet)
    • single_floor: A flag indicating whether the property had only one floor
    • month: The month of the home sale
    • quartile_zone: A quartile distribution index of the most expensive zip codes, where 1 means less expansive and 4 most expansive.
  20. Zillow Rent Index, 2010-Present

    • dataandsons.com
    csv, zip
    Updated Dec 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    noelyn toledo (2017). Zillow Rent Index, 2010-Present [Dataset]. https://www.dataandsons.com/data-market/economic/zillow-rent-index-2010-present
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Dec 8, 2017
    Dataset provided by
    Authors
    noelyn toledo
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2011 - Oct 26, 2017
    Description

    About this Dataset

    The Zillow Rent Index is the median estimated monthly rental price for a given area, and covers multifamily, single family, condominium, and cooperative homes in Zillow’s database, regardless of whether they are currently listed for rent. It is expressed in dollars and is seasonally adjusted. The Zillow Rent Index is published at the national, state, metro, county, city, neighborhood, and zip code levels. Zillow produces rent estimates (Rent Zestimates) based on proprietary statistical and machine learning models. Within each county or state, the models observe recent rental listings and learn the relative contribution of various home attributes in predicting prevailing rents. These home attributes include physical facts about the home, prior sale transactions, tax assessment information and geographic location as well as the estimated market value of the home (Zestimate). Based on the patterns learned, these models estimate rental prices on all homes, including those not presently for rent. Because of the availability of Zillow rental listing data used to train the models, Rent Zestimates are only available back to November 2010; therefore, each ZRI time series starts on the same date. Acknowledgement The rent index data was calculated from Zillow's proprietary Rent Zestimates and published on its website.

    Category

    Economic

    Keywords

    Home,cities,rent,Real Estate,Mortgage

    Row Count

    13131

    Price

    Free

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rob Mulla (2025). Zillow Home Value Index (Updated Monthly) [Dataset]. https://www.kaggle.com/datasets/robikscube/zillow-home-value-index
Organization logo

Zillow Home Value Index (Updated Monthly)

Updated Monthly Pulled from FRED Api

Explore at:
zip(275560 bytes)Available download formats
Dataset updated
Dec 21, 2025
Authors
Rob Mulla
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

Reference: https://www.zillow.com/research/zhvi-methodology/

Official Background

In setting out to create a new home price index, a major problem Zillow sought to overcome in existing indices was their inability to deal with the changing composition of properties sold in one time period versus another time period. Both a median sale price index and a repeat sales index are vulnerable to such biases (see the analysis here for an example of how influential the bias can be). For example, if expensive homes sell at a disproportionately higher rate than less expensive homes in one time period, a median sale price index will characterize this market as experiencing price appreciation relative to the prior period of time even if the true value of homes is unchanged between the two periods.

The ideal home price index would be based off sale prices for the same set of homes in each time period so there was never an issue of the sales mix being different across periods. This approach of using a constant basket of goods is widely used, common examples being a commodity price index and a consumer price index. Unfortunately, unlike commodities and consumer goods, for which we can observe prices in all time periods, we can’t observe prices on the same set of homes in all time periods because not all homes are sold in every time period.

The innovation that Zillow developed in 2005 was a way of approximating this ideal home price index by leveraging the valuations Zillow creates on all homes (called Zestimates). Instead of actual sale prices on every home, the index is created from estimated sale prices on every home. While there is some estimation error associated with each estimated sale price (which we report here), this error is just as likely to be above the actual sale price of a home as below (in statistical terms, this is referred to as minimal systematic error). Because of this fact, the distribution of actual sale prices for homes sold in a given time period looks very similar to the distribution of estimated sale prices for this same set of homes. But, importantly, Zillow has estimated sale prices not just for the homes that sold, but for all homes even if they didn’t sell in that time period. From this data, a comprehensive and robust benchmark of home value trends can be computed which is immune to the changing mix of properties that sell in different periods of time (see Dorsey et al. (2010) for another recent discussion of this approach).

For an in-depth comparison of the Zillow Home Value Index to the Case Shiller Home Price Index, please refer to the Zillow Home Value Index Comparison to Case-Shiller

Each Zillow Home Value Index (ZHVI) is a time series tracking the monthly median home value in a particular geographical region. In general, each ZHVI time series begins in April 1996. We generate the ZHVI at seven geographic levels: neighborhood, ZIP code, city, congressional district, county, metropolitan area, state and the nation.

Underlying Data

Estimated sale prices (Zestimates) are computed based on proprietary statistical and machine learning models. These models begin the estimation process by subdividing all of the homes in United States into micro-regions, or subsets of homes either near one another or similar in physical attributes to one another. Within each micro-region, the models observe recent sale transactions and learn the relative contribution of various home attributes in predicting the sale price. These home attributes include physical facts about the home and land, prior sale transactions, tax assessment information and geographic location. Based on the patterns learned, these models can then estimate sale prices on homes that have not yet sold.

The sale transactions from which the models learn patterns include all full-value, arms-length sales that are not foreclosure resales. The purpose of the Zestimate is to give consumers an indication of the fair value of a home under the assumption that it is sold as a conventional, non-foreclosure sale. Similarly, the purpose of the Zillow Home Value Index is to give consumers insight into the home value trends for homes that are not being sold out of foreclosure status. Zillow research indicates that homes sold as foreclosures have typical discounts relative to non-foreclosure sales of between 20 and 40 percent, depending on the foreclosure saturation of the market. This is not to say that the Zestimate is not influenced by foreclosure resales. Zestimates are, in fact, influenced by foreclosure sales, but the pathway of this influence is through the downward pressure foreclosure sales put on non-foreclosure sale prices. It is the price signal observed in the latter that we are attempting to measure and, in turn, predict with the Zestimate.

Market Segments Within each region, we calculate the ZHVI for various subsets of homes (or mar...

Search
Clear search
Close search
Google apps
Main menu