10 datasets found
  1. Vital Signs: Life Expectancy – by ZIP Code

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Apr 12, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 12, 2017
    Dataset provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Authors
    State of California, Department of Health: Death Records
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

    U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

    For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

    ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  2. C

    Public Health Statistics - Life Expectancy By Community Area - Historical

    • data.cityofchicago.org
    • healthdata.gov
    • +2more
    csv, xlsx, xml
    Updated Jun 16, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vital statistics files produced by the Illinois Department of Public Health (IDPH) (2014). Public Health Statistics - Life Expectancy By Community Area - Historical [Dataset]. https://data.cityofchicago.org/widgets/qjr3-bm53
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Jun 16, 2014
    Dataset authored and provided by
    Vital statistics files produced by the Illinois Department of Public Health (IDPH)
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org.

    This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf

  3. Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Authors
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  4. b

    Life Expectancy

    • data.baltimorecity.gov
    Updated Mar 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Life Expectancy [Dataset]. https://data.baltimorecity.gov/maps/c7bc491a655741f59b3d80932b9857d6
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The average number of years a newborn can expect to live, assuming he or she experiences the currently prevailing rates of death through their lifespan. Source: Baltimore City Health Department Years Available: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018

  5. O

    Average age at death in Travis County by ZIP Code, 2011-2015

    • data.austintexas.gov
    • datahub.austintexas.gov
    • +3more
    application/rdfxml +5
    Updated Nov 30, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2018). Average age at death in Travis County by ZIP Code, 2011-2015 [Dataset]. https://data.austintexas.gov/Health-and-Community-Services/Average-age-at-death-in-Travis-County-by-ZIP-Code-/ci7a-cwah
    Explore at:
    application/rssxml, tsv, csv, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Nov 30, 2018
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Travis County
    Description

    This dataset contains the number of deaths and the average age at death for all deaths in a ZIP Code between 2011 and 2015. The data were obtained by special request from Texas Department of State Health Services Vital Statistics.

  6. a

    Health Status Statistics - Zip Code

    • hub.arcgis.com
    • data-sccphd.opendata.arcgis.com
    Updated Feb 21, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Health Status Statistics - Zip Code [Dataset]. https://hub.arcgis.com/datasets/sccphd::health-status-statistics-zip-code
    Explore at:
    Dataset updated
    Feb 21, 2018
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    Zip Code, Life expectancy; Cancer deaths per 100,000 people; Heart disease deaths per 100,000 people; Alzheimer’s disease deaths per 100,000 people; Stroke deaths per 100,000 people; Chronic lower respiratory disease deaths per 100,000 people; Unintentional injury deaths per 100,000 people; Diabetes deaths per 100,000 people; Influenza and pneumonia deaths per 100,000 people; Hypertension deaths per 100,000 people. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf

  7. Death Profiles by ZIP Code

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by ZIP Code [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-zip-code
    Explore at:
    zip, csv(78958555), csv(4571), csv(80055974), csv(80054609), csv(40627562)Available download formats
    Dataset updated
    Apr 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California residents by ZIP Code based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths of California residents. The data tables include deaths of residents of California by ZIP Code of residence (by residence). The data are reported as totals, as well as stratified by age and gender. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  8. A

    COVID-19 Vaccinations by Demographics and Tempe Zip Codes

    • data.amerigeoss.org
    • data.tempe.gov
    • +11more
    Updated Aug 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2021). COVID-19 Vaccinations by Demographics and Tempe Zip Codes [Dataset]. https://data.amerigeoss.org/fr/dataset/covid-19-vaccinations-by-demographics-and-tempe-zip-codes-a6db7
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Aug 4, 2021
    Dataset provided by
    United States
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tempe
    Description
    This Power BI dashboard shows the COVID-19 vaccination rate by key demographics including age groups, race and ethnicity, and sex for Tempe zip codes.

    Data Source: Maricopa County GIS Open Data weekly count of COVID-19 vaccinations. The data were reformatted from the source data to accommodate dashboard configuration.

    The Maricopa County Department of Public Health (MCDPH) releases the COVID-19 vaccination data for each zip code and city in Maricopa County at ~12:00 PM weekly on Wednesdays via the Maricopa County GIS Open Data website (https://data-maricopa.opendata.arcgis.com/). More information about the data is available on the Maricopa County COVID-19 Vaccine Data page (https://www.maricopa.gov/5671/Public-Vaccine-Data#dashboard). The dashboard’s values are refreshed at 3:00 PM weekly on Wednesdays. The most recent date included on the dashboard is available by hovering over the last point on the right-hand side of each chart. Please note that the times when the Maricopa County Department of Public Health (MCDPH) releases weekly data for COVID-19 vaccines may vary. If data are not released by the time of the scheduled dashboard refresh, the values may appear on the dashboard with the next data release, which may be one or more days after the last scheduled release.

    Dates: Updated data shows publishing dates which represents values from the previous calendar week (Sunday through Saturday). For more details on data reporting, please see the Maricopa County COVID-19 data reporting notes at https://www.maricopa.gov/5460/Coronavirus-Disease-2019.

  9. g

    Nucleartourist.com, USA Nuclear Power Plant locations (Zipcode), USA, 2006

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data (2008). Nucleartourist.com, USA Nuclear Power Plant locations (Zipcode), USA, 2006 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    data
    Nucleartourist.com
    Description

    The locations of all Nuclear Power Plants in the United States, by zipcode. This data was taken from a non for-profit website called the Nuclear Tourist. It was then cross checked with the reactor information provided by the U.S. Nuclear Regulatory Commission (the USNRC did not provide the exact addresses). Data Source: http://www.nucleartourist.com/us/address.htm

  10. g

    Spamhaus, Registry of Known Spam Operations, USA, 2004

    • geocommons.com
    Updated Apr 29, 2008
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spamhaus (2008). Spamhaus, Registry of Known Spam Operations, USA, 2004 [Dataset]. http://geocommons.com/search.html
    Explore at:
    Dataset updated
    Apr 29, 2008
    Dataset provided by
    Spamhaus
    data
    Description

    This is a data set built in the fall of 2004 of the addresses of know spammers that have been identified by Spamhaus. Specifically the data comes from their Registry of Known Spam Operations - http://www.spamhaus.org/Rokso/. Street addresses were culled from the the database then geocoded to a zip code level of accuracy.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – by ZIP Code [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-by-ZIP-Code/xym8-u3kc
Organization logo

Vital Signs: Life Expectancy – by ZIP Code

Explore at:
csv, xlsx, xmlAvailable download formats
Dataset updated
Apr 12, 2017
Dataset provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Authors
State of California, Department of Health: Death Records
Description

VITAL SIGNS INDICATOR Life Expectancy (EQ6)

FULL MEASURE NAME Life Expectancy

LAST UPDATED April 2017

DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov

U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov

CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.

For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.

ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

Search
Clear search
Close search
Google apps
Main menu