https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.
This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in Missouri per the most current US Census data, including information on rank and average income.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in South Carolina per the most current US Census data, including information on rank and average income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in Puerto Rico per the most current US Census data, including information on rank and average income.
This map shows demographic and income data in Detroit. What stands out is a pattern of low-income households in the downtown area combined with areas of high child population. This pattern helps answer where in Detroit our charity should focus its resources to help children living in poverty.
This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.
Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.
The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:
Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage
https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Household Income in the United States (MEHOINUSA646N) from 1984 to 2023 about households, median, income, and USA.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in South Dakota per the most current US Census data, including information on rank and average income.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Personal Income Tax Statistics By Zip Code’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/417f3888-fa4b-4b86-b7d7-f7e6023d337e on 12 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.
--- Original source retains full ownership of the source dataset ---
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset provides the information of all the carriers providing Lifeline service, their customer service number, service type, state, and URL. The purpose of this dataset is to provide the most accurate list of carriers providing service in a particular area within a given state, through the use of zip codes. To ensure that this data is up-to-date and accurate, it is refreshed periodically to add new carriers and the corresponding zip codes of their designated service areas, update the zip codes for existing carriers, and remove zip codes for carriers that have relinquished their ETC designation. In the event that a user enters a zip code that does not return any service provider(s), a complete listing of the state in which the zip code is found will be returned with the recommendation that the consumer confirm the availability of Lifeline service in their chosen zip code with a service provider from that state.
This is the subset of parcels that meet the FIRST TWO of the “specified criteria” in the King County Code 26.12.003J definition of “Opportunity Areas.” Areas within King County that: (a) “are located in a census tract in which the median household income is in the lowest one-third for median household income for census tracts in King County;” (b) “are located in a ZIP code in which hospitalization rates for asthma, diabetes, and heart disease are in the highest one-third for ZIP Codes in King County.”
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.
This feature dataset contains a snapshot of all King County parcels from September 2020, with all of the "additional relevant criteria" data used in Method 2 of the LCI opportunity area determination described below.There are two methods by which a property may qualify as being in an opportunity area:Method 1. Property meets all three of the following "specified criteria" in King County code 26.12.003.(a) Areas "located in a census tract in which the median household income is in the lowest one-third for median household income for census tracts in King County; (b) "located in a ZIP code in which hospitalization rates for asthma, diabetes, and heart disease are in the highest one-third for ZIP codes in King County; and (c) "are within the Urban Growth Boundary and do not have a publicly owned and accessible park or open space within one-quarter mile of a residence, or are outside the Urban Growth Boundary and do not have a publicly owned and accessible park or open space within two miles of a residence." (King County Code 26.12.003)Data results related to Method 1 are shown in the LCI Opportunity Areas dataset on the King County GIS Open Data site. In this dataset, the parcels where the "CriteriaAllYN" column is equal to "Y" also represents those parcels.Method 2. If a property does not qualify under Method #1, a project may qualify if: "the project proponent or proponents can demonstrate, and the advisory committee determines, that residents living in the area, or populations the project is intended to serve, disproportionately experience limited access to public open spaces and experience demonstrated hardships including, but not limited to, low income, poor health and social and environmental factors that reflect a lack of one or more conditions for a fair and just society as defined as "determinants of equity" in KCC 2.10.210." (King County Code 26.12.003)Conservation Futures (CFT) values the use of multiple sources of data and information to demonstrate that a property is in an opportunity area. Applicants are welcome to provide additional criteria and data sources not identified in this report to demonstrate that a property is in an opportunity area. These sources are provided in the document here: Understanding the Data Report.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Zip Code; Median household income; Unemployed (ages GE 16); Families below 185% FPL; Children (ages 0-17) below 185% FPL; Children (ages 3-4) enrolled in preschool or nursery school; Less than high school; High school graduate; Some college or associates degree; College graduate or higher; High school graduate or less. Percentages unless otherwise noted. Source information provided at: https://www.sccgov.org/sites/phd/hi/hd/Documents/City%20Profiles/Methodology/Neighborhood%20profile%20methodology_082914%20final%20for%20web.pdf
This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.