73 datasets found
  1. d

    Individuals, ZIP Code Data

    • catalog.data.gov
    • gimi9.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics of Income (SOI) (2024). Individuals, ZIP Code Data [Dataset]. https://catalog.data.gov/dataset/zip-code-data
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Statistics of Income (SOI)
    Description

    This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.

  2. i

    Richest Zip Codes in New Jersey

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in New Jersey [Dataset]. https://www.incomebyzipcode.com/newjersey
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    New Jersey
    Description

    A dataset listing the richest zip codes in New Jersey per the most current US Census data, including information on rank and average income.

  3. i

    Richest Zip Codes in West Virginia

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in West Virginia [Dataset]. https://www.incomebyzipcode.com/westvirginia
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    West Virginia
    Description

    A dataset listing the richest zip codes in West Virginia per the most current US Census data, including information on rank and average income.

  4. f

    Data_Sheet_2_High-income ZIP codes in New York City demonstrate higher case...

    • frontiersin.figshare.com
    application/csv
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema (2024). Data_Sheet_2_High-income ZIP codes in New York City demonstrate higher case rates during off-peak COVID-19 waves.CSV [Dataset]. http://doi.org/10.3389/fpubh.2024.1384156.s002
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Frontiers
    Authors
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.

  5. Personal Income Tax Statistics By Zip Code

    • data.ca.gov
    • s.cnmilf.com
    • +1more
    csv, pdf
    Updated Apr 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Franchise Tax Board (2024). Personal Income Tax Statistics By Zip Code [Dataset]. https://data.ca.gov/dataset/personal-income-tax-statistics-by-zip-code
    Explore at:
    pdf(38561), csv(13311119)Available download formats
    Dataset updated
    Apr 24, 2024
    Dataset authored and provided by
    California Franchise Tax Boardhttp://ftb.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.

  6. i

    Richest Zip Codes in Missouri

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Missouri [Dataset]. https://www.incomebyzipcode.com/missouri
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Missouri
    Description

    A dataset listing the richest zip codes in Missouri per the most current US Census data, including information on rank and average income.

  7. a

    Median Household Income GIS

    • hub.arcgis.com
    Updated Aug 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2022). Median Household Income GIS [Dataset]. https://hub.arcgis.com/maps/sccphd::median-household-income-gis
    Explore at:
    Dataset updated
    Aug 24, 2022
    Dataset authored and provided by
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Table contains median household income for households residing in Santa Clara County. Data are presented at county, city, zip code and census tract level. Notes: Data are presented for zip codes (ZCTAs) fully within the county. Data are capped at $250,001 for geographies with median household income of $250,000 or higher. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B19013; data accessed on May 16, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographymedHHinc (Numeric): Median household income

  8. i

    Richest Zip Codes in South Carolina

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in South Carolina [Dataset]. https://www.incomebyzipcode.com/southcarolina
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    South Carolina
    Description

    A dataset listing the richest zip codes in South Carolina per the most current US Census data, including information on rank and average income.

  9. Wealth Segmentation of U.S. ZIP Codes Based on IRS

    • kaggle.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Namrata_Nyam (2025). Wealth Segmentation of U.S. ZIP Codes Based on IRS [Dataset]. http://doi.org/10.34740/kaggle/dsv/12424277
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Namrata_Nyam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Wealth Segmentation of U.S. ZIP Codes Based on IRS Data

    This dataset provides a wealth-tier classification of U.S. ZIP codes for high income brackets using IRS income data and multivariate KMeans clustering. It can help with regional targeting, CRM enrichment, market analysis, or any data science task that benefits from understanding high income distribution across the U.S.

    šŸ’” Source

    • IRS SOI ZIP Code Data (open source)
    • Aggregated across AGI brackets (stub 3–6)

    🧠 What’s Inside

    Each row represents a ZIP code with:

    • AGI (A00100), Total Income (A00200)
    • Capital Gains, Business Income, Tax Paid
    • Cluster assignment (0–2)
    • Wealth Tier label: Low, Medium, or High

    The cluster assignments are refined using distance to cluster centroids in normalized feature space to improve accuracy.

    šŸ’¼ Use Cases

    • Segmenting markets for B2B/B2C outreach
    • CRM lead enrichment
    • Territory planning and resource allocation
    • Visualization and dashboard overlays
    ColumnDescription
    zipcodeU.S. ZIP code
    STATEFIPSFederal Information Processing Standard (FIPS) code for the state
    STATEU.S. state abbreviation (e.g., AL, CA)
    agi_stubAdjusted Gross Income bracket (1 = <$25K, ..., 6 = $200K+)
    A00100Adjusted Gross Income
    A02650Total income from all sources
    A10600Total tax payments
    A00200Wages and salaries
    MARS2Count of married joint returns
    N2Number of dependents
    A00900Business/professional net income
    mars1Count of single returns
    A26270Partnership and S-Corp income
    A09400Self-employment tax
    MARS4Head of household returns
    A85300Net investment income
    A00600Ordinary dividends
    A04475Qualified business income deduction
    A00650Qualified dividends
    A18500Real estate taxes paid
    ClusterNumeric cluster ID (0 = High, 1 = Medium, 2 = Low)
    Wealth_TierHuman-readable wealth tier label

    šŸ“¬ Contact

    Created by Namrata Nyamagoudar(LinkedIn) for open-source analysis and enrichment use cases.

  10. a

    2018 ACS Demographic & Socio-Economic Data Of USA At Zip Code Level

    • one-health-data-hub-osu-geog.hub.arcgis.com
    Updated May 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    snakka_OSU_GEOG (2024). 2018 ACS Demographic & Socio-Economic Data Of USA At Zip Code Level [Dataset]. https://one-health-data-hub-osu-geog.hub.arcgis.com/items/25ba4049241f4ac49fd231dcf192ab53
    Explore at:
    Dataset updated
    May 22, 2024
    Dataset authored and provided by
    snakka_OSU_GEOG
    Area covered
    Description

    Data SourcesAmerican Community Survey (ACS):Conducted by: U.S. Census BureauDescription: The ACS is an ongoing survey that provides detailed demographic and socio-economic data on the population and housing characteristics of the United States.Content: The survey collects information on various topics such as income, education, employment, health insurance coverage, and housing costs and conditions.Frequency: The ACS offers more frequent and up-to-date information compared to the decennial census, with annual estimates produced based on a rolling sample of households.Purpose: ACS data is essential for policymakers, researchers, and communities to make informed decisions and address the evolving needs of the population.CDC/ATSDR Social Vulnerability Index (SVI):Created by: ATSDR’s Geospatial Research, Analysis & Services Program (GRASP)Utilized by: CDCDescription: The SVI is designed to identify and map communities that are most likely to need support before, during, and after hazardous events.Content: SVI ranks U.S. Census tracts based on 15 social factors, including unemployment, minority status, and disability, and groups them into four related themes. Each tract receives rankings for each Census variable and for each theme, as well as an overall ranking, indicating its relative vulnerability.Purpose: SVI data provides insights into the social vulnerability of communities at both the tract and zip code levels, helping public health officials and emergency response planners allocate resources effectively.Utilization and IntegrationBy integrating data from both the ACS and the SVI, this dataset enables an in-depth analysis and understanding of various socio-economic and demographic indicators at the census tract level. This integrated data is valuable for research, policymaking, and community planning purposes, allowing for a comprehensive understanding of social and economic dynamics across different geographical areas in the United States.ApplicationsTargeted Interventions: Facilitates the development of targeted interventions to address the needs of vulnerable populations within specific zip codes.Resource Allocation: Assists emergency response planners in allocating resources more effectively based on community vulnerability at the zip code level.Research: Provides a rich dataset for academic and applied research in socio-economic and demographic studies at a granular zip code level.Community Planning: Supports the planning and development of community programs and initiatives aimed at improving living conditions and reducing vulnerabilities within specific zip code areas.Note: Due to limitations in the data environment, variable names may be truncated. Refer to the provided table for a clear understanding of the variables. CSV Variable NameShapefile Variable NameDescriptionStateNameStateNameName of the stateStateFipsStateFipsState-level FIPS codeState nameStateNameName of the stateCountyNameCountyNameName of the countyCensusFipsCensusFipsCounty-level FIPS codeState abbreviationStateFipsState abbreviationCountyFipsCountyFipsCounty-level FIPS codeCensusFipsCensusFipsCounty-level FIPS codeCounty nameCountyNameName of the countyAREA_SQMIAREA_SQMITract area in square milesE_TOTPOPE_TOTPOPPopulation estimates, 2013-2017 ACSEP_POVEP_POVPercentage of persons below poverty estimateEP_UNEMPEP_UNEMPUnemployment Rate estimateEP_HBURDEP_HBURDHousing cost burdened occupied housing units with annual income less than $75,000EP_UNINSUREP_UNINSURUninsured in the total civilian noninstitutionalized population estimate, 2013-2017 ACSEP_PCIEP_PCIPer capita income estimate, 2013-2017 ACSEP_DISABLEP_DISABLPercentage of civilian noninstitutionalized population with a disability estimate, 2013-2017 ACSEP_SNGPNTEP_SNGPNTPercentage of single parent households with children under 18 estimate, 2013-2017 ACSEP_MINRTYEP_MINRTYPercentage minority (all persons except white, non-Hispanic) estimate, 2013-2017 ACSEP_LIMENGEP_LIMENGPercentage of persons (age 5+) who speak English "less than well" estimate, 2013-2017 ACSEP_MUNITEP_MUNITPercentage of housing in structures with 10 or more units estimateEP_MOBILEEP_MOBILEPercentage of mobile homes estimateEP_CROWDEP_CROWDPercentage of occupied housing units with more people than rooms estimateEP_NOVEHEP_NOVEHPercentage of households with no vehicle available estimateEP_GROUPQEP_GROUPQPercentage of persons in group quarters estimate, 2014-2018 ACSBelow_5_yrBelow_5_yrUnder 5 years: Percentage of Total populationBelow_18_yrBelow_18_yrUnder 18 years: Percentage of Total population18-39_yr18_39_yr18-39 years: Percentage of Total population40-64_yr40_64_yr40-64 years: Percentage of Total populationAbove_65_yrAbove_65_yrAbove 65 years: Percentage of Total populationPop_malePop_malePercentage of total population malePop_femalePop_femalePercentage of total population femaleWhitewhitePercentage population of white aloneBlackblackPercentage population of black or African American aloneAmerican_indianamerican_iPercentage population of American Indian and Alaska native aloneAsianasianPercentage population of Asian aloneHawaiian_pacific_islanderhawaiian_pPercentage population of Native Hawaiian and Other Pacific Islander aloneSome_othersome_otherPercentage population of some other race aloneMedian_tot_householdsmedian_totMedian household income in the past 12 months (in 2019 inflation-adjusted dollars) by household size – total householdsLess_than_high_schoolLess_than_Percentage of Educational attainment for the population less than 9th grades and 9th to 12th grade, no diploma estimateHigh_schoolHigh_schooPercentage of Educational attainment for the population of High school graduate (includes equivalency)Some_collegeSome_collePercentage of Educational attainment for the population of Some college, no degreeAssociates_degreeAssociatesPercentage of Educational attainment for the population of associate degreeBachelor’s_degreeBachelor_sPercentage of Educational attainment for the population of Bachelor’s degreeMaster’s_degreeMaster_s_dPercentage of Educational attainment for the population of Graduate or professional degreecomp_devicescomp_devicPercentage of Household having one or more types of computing devicesInternetInternetPercentage of Household with an Internet subscriptionBroadbandBroadbandPercentage of Household having Broadband of any typeSatelite_internetSatelite_iPercentage of Household having Satellite Internet serviceNo_internetNo_internePercentage of Household having No Internet accessNo_computerNo_computePercentage of Household having No computerThis table provides a mapping between the CSV variable names and the shapefile variable names, along with a brief description of each variable.

  11. National Neighborhood Data Archive (NaNDA): Socioeconomic Status and...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay (2025). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022 [Dataset]. http://doi.org/10.3886/ICPSR38528.v5
    Explore at:
    stata, delimited, sas, spss, r, asciiAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms

    Time period covered
    1990 - 2022
    Area covered
    United States
    Description

    These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.

  12. g

    Personal Income Tax Statistics By Zip Code | gimi9.com

    • gimi9.com
    Updated May 12, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2007). Personal Income Tax Statistics By Zip Code | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_personal-income-tax-statistics-by-zip-code/
    Explore at:
    Dataset updated
    May 12, 2007
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.

  13. A

    ā€˜Personal Income Tax Statistics By Zip Code’ analyzed by Analyst-2

    • analyst-2.ai
    Updated May 12, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2007). ā€˜Personal Income Tax Statistics By Zip Code’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-personal-income-tax-statistics-by-zip-code-2f0d/e6a3b877/?iid=004-134&v=presentation
    Explore at:
    Dataset updated
    May 12, 2007
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ā€˜Personal Income Tax Statistics By Zip Code’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/417f3888-fa4b-4b86-b7d7-f7e6023d337e on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset contains data from California resident tax returns filed with California adjusted gross income and self-assessed tax listed by zip code. This dataset contains data for taxable years 1992 to the most recent tax year available.

    --- Original source retains full ownership of the source dataset ---

  14. a

    Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy

    • uscssi.hub.arcgis.com
    Updated Nov 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Sciences Institute (2021). Housing Affordability Index in the United States-Copy-Copy-Copy-Copy-Copy [Dataset]. https://uscssi.hub.arcgis.com/maps/799e364bc9ef4d1a8c1f725a71d280e4
    Explore at:
    Dataset updated
    Nov 10, 2021
    Dataset authored and provided by
    Spatial Sciences Institute
    Area covered
    Description

    This map uses a two-color thematic shading to emphasize where areas experience the least to the most affordable housing across the US. This web map is part of the How Affordable is the American Dream story map.

    Esri’s Housing Affordability Index (HAI) is a powerful tool to analyze local real estate markets. Esri’s housing affordability index measures the financial ability of a typical household to purchase an existing home in an area. A HAI of 100 represents an area that on average has sufficient household income to qualify for a loan on a home valued at the median home price. An index greater than 100 suggests homes are easily afforded by the average area resident. A HAI less than 100 suggests that homes are less affordable. The housing affordability index is not applicable in areas with no households or in predominantly rental markets . Esri’s home value estimates cover owner-occupied homes only. For a full demographic analysis of US growth refer to Esri's Trending in 2017: The Selectivity of Growth.

    The pop-up is configured to show the following 2017 demographics for each County and ZIP Code:

    Total Households 2010-17 Annual Pop Change Median Age Percent Owner-Occupied Housing Units Median Household Income Median Home Value Housing Affordability Index Share of Income to Mortgage

  15. O

    Lifeline Companies Near Me

    • opendata.usac.org
    • datahub.usac.org
    application/rdfxml +5
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Universal Service Administrative Company (2025). Lifeline Companies Near Me [Dataset]. https://opendata.usac.org/w/kjtb-4uf7/default?cur=vXsZ2cjaeqe
    Explore at:
    csv, application/rdfxml, application/rssxml, tsv, json, xmlAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Universal Service Administrative Company
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset provides the information of all the carriers providing Lifeline service, their customer service number, service type, state, and URL. The purpose of this dataset is to provide the most accurate list of carriers providing service in a particular area within a given state, through the use of zip codes. To ensure that this data is up-to-date and accurate, it is refreshed periodically to add new carriers and the corresponding zip codes of their designated service areas, update the zip codes for existing carriers, and remove zip codes for carriers that have relinquished their ETC designation. In the event that a user enters a zip code that does not return any service provider(s), a complete listing of the state in which the zip code is found will be returned with the recommendation that the consumer confirm the availability of Lifeline service in their chosen zip code with a service provider from that state.

  16. f

    Significant high-rate spatial clusters of diabetes-related hospitalizations...

    • plos.figshare.com
    xls
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Lord; Agricola Odoi (2024). Significant high-rate spatial clusters of diabetes-related hospitalizations at the ZIP code tabulation area level in Florida, 2016–2019. [Dataset]. http://doi.org/10.1371/journal.pone.0298182.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Jennifer Lord; Agricola Odoi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Florida
    Description

    Significant high-rate spatial clusters of diabetes-related hospitalizations at the ZIP code tabulation area level in Florida, 2016–2019.

  17. O

    Womply State-level Business Revenue

    • data.ct.gov
    • datasets.ai
    • +2more
    application/rdfxml +5
    Updated May 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Opportunity Insights (2022). Womply State-level Business Revenue [Dataset]. https://data.ct.gov/Business/Womply-State-level-Business-Revenue/kypk-e3qu
    Explore at:
    csv, application/rdfxml, application/rssxml, tsv, xml, jsonAvailable download formats
    Dataset updated
    May 9, 2022
    Dataset authored and provided by
    Opportunity Insights
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Small business transactions and revenue data aggregated from several credit card processors, collected by Womply and compiled by Opportunity Insights. Transactions and revenue are reported based on the ZIP code where the business is located.

    Data provided for CT (FIPS code 9), MA (25), NJ (34), NY (36), and RI (44).

    Data notes from Opportunity Insights: Seasonally adjusted change since January 2020. Data is indexed in 2019 and 2020 as the change relative to the January index period. We then seasonally adjust by dividing year-over-year, which represents the difference between the change since January observed in 2020 compared to the change since January observed since 2019. We account for differences in the dates of federal holidays between 2019 and 2020 by shifting the 2019 reference data to align the holidays before performing the year-over-year division.

    Small businesses are defined as those with annual revenue below the Small Business Administration’s thresholds. Thresholds vary by 6 digit NAICS code ranging from a maximum number of employees between 100 to 1500 to be considered a small business depending on the industry.

    County-level and metro-level data and breakdowns by High/Middle/Low income ZIP codes have been temporarily removed since the August 21st 2020 update due to revisions in the structure of the raw data we receive. We hope to add them back to the OI Economic Tracker soon.

    More detailed documentation on Opportunity Insights data can be found here: https://github.com/OpportunityInsights/EconomicTracker/blob/main/docs/oi_tracker_data_documentation.pdf

  18. a

    LCI Qualifying Income and Health Areas / lci qual income health area

    • king-snocoplanning.opendata.arcgis.com
    Updated Dec 21, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2020). LCI Qualifying Income and Health Areas / lci qual income health area [Dataset]. https://king-snocoplanning.opendata.arcgis.com/datasets/kingcounty::lci-qualifying-income-and-health-areas-lci-qual-income-health-area
    Explore at:
    Dataset updated
    Dec 21, 2020
    Dataset authored and provided by
    King County
    Area covered
    Description

    This is the subset of parcels that meet the FIRST TWO of the ā€œspecified criteriaā€ in the King County Code 26.12.003J definition of ā€œOpportunity Areas.ā€ Areas within King County that: (a) ā€œare located in a census tract in which the median household income is in the lowest one-third for median household income for census tracts in King County;ā€ (b) ā€œare located in a ZIP code in which hospitalization rates for asthma, diabetes, and heart disease are in the highest one-third for ZIP Codes in King County.ā€

  19. Data from: A Spatial Analysis of Food Insecurity and Body Mass Index with...

    • zenodo.org
    Updated Feb 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buscemi, Joanna; O'Donnell, Alexander; Takgbajouah, Mary; Patano, Paige; Buscemi, Joanna; O'Donnell, Alexander; Takgbajouah, Mary; Patano, Paige (2023). A Spatial Analysis of Food Insecurity and Body Mass Index with Income and Grocery Store Density in a Diverse Sample of Adolescents and Young Adults [Dataset]. http://doi.org/10.5281/zenodo.7629854
    Explore at:
    Dataset updated
    Feb 11, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Buscemi, Joanna; O'Donnell, Alexander; Takgbajouah, Mary; Patano, Paige; Buscemi, Joanna; O'Donnell, Alexander; Takgbajouah, Mary; Patano, Paige
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract: Food insecurity occurs when a household lacks consistent access to food and is more prevalent in ethnic and racial minoritized populations. While there has been a proliferation of research linking food insecurity to obesity, these findings are mixed. It may be helpful to consider some additional geographic factors that may be associated with both factors including socioeconomic status and grocery store density. The purpose of the current study aimed to examine spatial relationships between food insecurity and SES/store density and BMI and SES/store density in a diverse sample of adolescents and young adults across two studies in a large, urban city. GIS analysis revealed that participants with the highest food insecurity (larger symbols) tend to live in the zip codes with the lowest median income. There did not appear to be clear a relationship between food insecurity and store density. Participants with the highest BMI tend to live in zip codes with lower median income and participants with higher BMI tended to live further away from downtown, which has the highest concentration of grocery stores in the city. Our findings may help to inform future interventions and policy approaches to addressing both obesity and food insecurity in areas of higher prevalence.

  20. Low-Income or Disadvantaged Communities Designated by California

    • data.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Jun 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). Low-Income or Disadvantaged Communities Designated by California [Dataset]. https://data.ca.gov/dataset/low-income-or-disadvantaged-communities-designated-by-california
    Explore at:
    zip, geojson, kml, csv, arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.


    Data downloaded in May 2022 from https://webmaps.arb.ca.gov/PriorityPopulations/.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistics of Income (SOI) (2024). Individuals, ZIP Code Data [Dataset]. https://catalog.data.gov/dataset/zip-code-data

Individuals, ZIP Code Data

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 22, 2024
Dataset provided by
Statistics of Income (SOI)
Description

This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.

Search
Clear search
Close search
Google apps
Main menu