43 datasets found
  1. c

    New York State ZIP Codes-County FIPS Cross-Reference

    • s.cnmilf.com
    • datasets.ai
    • +5more
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of New York (2025). New York State ZIP Codes-County FIPS Cross-Reference [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/new-york-state-zip-codes-county-fips-cross-reference
    Explore at:
    Dataset updated
    Jul 12, 2025
    Dataset provided by
    State of New York
    Area covered
    New York
    Description

    A listing of NYS counties with accompanying Federal Information Processing System (FIPS) and US Postal Service ZIP codes sourced from the NYS GIS Clearinghouse.

  2. H

    ZIP to County Crosswalk

    • dataverse.harvard.edu
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Kitch (2024). ZIP to County Crosswalk [Dataset]. http://doi.org/10.7910/DVN/0U2TCB
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    James Kitch
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Dec 31, 2023
    Area covered
    United States
    Description

    The following crosswalks are the result of a data pipeline that pulls crosswalks from the U.S. Department of Housing and Urban Development (HUD) database, compiling a comprehensive ZIP --> FIPS crosswalk from 2010 to 2023. The crosswalks are available in four different forms: "one2one": one row, per ZIP code, per year. Each ZIP is matched to its best matching FIPS code. "one2few": Potentially multiple rows, per ZIP code, per year. All FIPS codes with a non-zero number of addresses for a given ZIP code are returned. "one2one_summy" and "one2few_summy" return the same respective types of data as the above, but summarize across chunks of years. Further description of these datasets, as well as code to reproduce and adjust results according to certain parameters, is available at the Github repo.

  3. US ZIP codes to County

    • redivis.com
    application/jsonl +7
    Updated Dec 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2019). US ZIP codes to County [Dataset]. http://doi.org/10.57761/fbvb-3b24
    Explore at:
    sas, parquet, application/jsonl, avro, stata, spss, csv, arrowAvailable download formats
    Dataset updated
    Dec 2, 2019
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2010 - Apr 1, 2019
    Description

    Abstract

    A crosswalk dataset matching US ZIP codes to corresponding county codes

    Documentation

    The denominators used to calculate the address ratios are the ZIP code totals. When a ZIP is split by any of the other geographies, that ZIP code is duplicated in the crosswalk file.

    **Example: **ZIP code 03870 is split by two different Census tracts, 33015066000 and 33015071000, which appear in the tract column. The ratio of residential addresses in the first ZIP-Tract record to the total number of residential addresses in the ZIP code is .0042 (.42%). The remaining residential addresses in that ZIP (99.58%) fall into the second ZIP-Tract record.

    So, for example, if one wanted to allocate data from ZIP code 03870 to each Census tract located in that ZIP code, one would multiply the number of observations in the ZIP code by the residential ratio for each tract associated with that ZIP code.

    https://redivis.com/fileUploads/4ecb405e-f533-4a5b-8286-11e56bb93368%3E" alt="">(Note that the sum of each ratio column for each distinct ZIP code may not always equal 1.00 (or 100%) due to rounding issues.)

    County definition

    In the United States, a county is an administrative or political subdivision of a state that consists of a geographic region with specific boundaries and usually some level of governmental authority. The term "county" is used in 48 U.S. states, while Louisiana and Alaska have functionally equivalent subdivisions called parishes and boroughs, respectively.

    Further reading

    The following article demonstrates how to more effectively use the U.S. Department of Housing and Urban Development (HUD) United States Postal Service ZIP Code Crosswalk Files when working with disparate geographies.

    Wilson, Ron and Din, Alexander, 2018. “Understanding and Enhancing the U.S. Department of Housing and Urban Development’s ZIP Code Crosswalk Files,” Cityscape: A Journal of Policy Development and Research, Volume 20 Number 2, 277 – 294. URL: https://www.huduser.gov/portal/periodicals/cityscpe/vol20num2/ch16.pdf

    Contact information

    Questions regarding these crosswalk files can be directed to Alex Din with the subject line HUD-Crosswalks.

    Acknowledgement

    This dataset is taken from the U.S. Department of Housing and Urban Development (HUD) office: https://www.huduser.gov/portal/datasets/usps_crosswalk.html#codebook

  4. H

    County FIPS Matching Tool

    • dataverse.harvard.edu
    Updated Jan 20, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carl Klarner (2019). County FIPS Matching Tool [Dataset]. http://doi.org/10.7910/DVN/OSLU4G
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2019
    Dataset provided by
    Harvard Dataverse
    Authors
    Carl Klarner
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This tool--a simple csv or Stata file for merging--gives you a fast way to assign Census county FIPS codes to variously presented county names. This is useful for dealing with county names collected from official sources, such as election returns, which inconsistently present county names and often have misspellings. It will likely take less than ten minutes the first time, and about one minute thereafter--assuming all versions of your county names are in this file. There are about 3,142 counties in the U.S., and there are 77,613 different permutations of county names in this file (ave=25 per county, max=382). Counties with more likely permutations have more versions. Misspellings were added as I came across them over time. I DON'T expect people to cite the use of this tool. DO feel free to suggest the addition of other county name permutations.

  5. H

    PRISM data converted into FIPS, ZIP Code, and census tract summaries in the...

    • dataverse.harvard.edu
    Updated Sep 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robbie Parks (2025). PRISM data converted into FIPS, ZIP Code, and census tract summaries in the USA [Dataset]. http://doi.org/10.7910/DVN/5P6EGE
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 8, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Robbie Parks
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    PRISM data converted into FIPS, ZIP Code, and census tract summaries in the USA Introduction: Parameter-elevation Regressions on Independent Slopes Model (PRISM) by PRISM Climate group Oregon State temperature, precipitation 4km daily weather variable grids that I have converted to daily county FIPS, ZIP Code, and census tract summaries for use in several papers. Available for download (see Data below) in RDS (compact) format. CSV available on request. In Python it is easy to load RDS files and much more compact files than CSVs too. Note that ZIP Code throughout is actually ZIP Code Tabulation Area (ZCTA), which was developed to overcome the difficulties in precisely defining the land area covered by each ZIP Code. Defining the extent of an area is necessary in order to tabulate census data for that area.

  6. Census of Population and Housing, 1980: County and MCD by ZIP Code, 1979

    • commons.datacite.org
    • archive.ciser.cornell.edu
    Updated 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (2017). Census of Population and Housing, 1980: County and MCD by ZIP Code, 1979 [Dataset]. http://doi.org/10.6077/j5/ef7xli
    Explore at:
    Dataset updated
    2017
    Dataset provided by
    DataCitehttps://www.datacite.org/
    Cornell Center for Social Sciences
    Authors
    United States Census Bureau
    Description

    This data collection relates ZIP codes to counties, to standard metropolitan statistical areas (SMSAs), and, in New England, to minor civil divisions (MCDs). The relationships between ZIP codes and other geographical units are based on 1979 boundaries, and changes since that time are not reflected. The Census Bureau used various sources to determine ZIP code-county or ZIP code-MCD relationships. In the cases where the sources were confusing or contradictory as to the geographical boundaries of a ZIP code, multiple ZIP-code records (each representing the territory contained in that ZIP-code area) were included in the data file. As a result, the file tends to overstate the ZIP code-county or ZIP code-MCD crossovers. The file is organized by ZIP code and is a byproduct of data used to administer the 1980 Census. Variables include ZIP codes, post office names, FIPS state and county codes, county or MCD names, and SMSA codes.

  7. g

    New York State ZIP Codes-County FIPS Cross-Reference | gimi9.com

    • gimi9.com
    Updated May 11, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). New York State ZIP Codes-County FIPS Cross-Reference | gimi9.com [Dataset]. https://gimi9.com/dataset/ny_juva-r6g2
    Explore at:
    Dataset updated
    May 11, 2015
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    뉴욕
    Description

    🇺🇸 미국

  8. s

    ZIP Code Points, United States (Q3 2007)

    • searchworks.stanford.edu
    zip
    Updated Mar 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ZIP Code Points, United States (Q3 2007) [Dataset]. https://searchworks.stanford.edu/view/yq005xp4154
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 23, 2025
    Area covered
    United States
    Description

    This layer provides zip code data for view and analysis in GIS and interactive web mapping applications.

  9. First Street Foundation Property Level Flood Risk Statistics V2.0

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    First Street Foundation; First Street Foundation (2024). First Street Foundation Property Level Flood Risk Statistics V2.0 [Dataset]. http://doi.org/10.5281/zenodo.6459076
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    First Street Foundation; First Street Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The property level flood risk statistics generated by the First Street Foundation Flood Model Version 2.0 come in CSV format.

    The data that is included in the CSV includes:

    • An FSID; a First Street ID (FSID) is a unique identifier assigned to each location.

    • The latitude and longitude of a parcel as well as the zip code, census block group, census tract, county, congressional district, and state of a given parcel.

    • The property’s Flood Factor as well as data on economic loss.

    • The flood depth in centimeters at the low, medium, and high CMIP 4.5 climate scenarios for the 2, 5, 20, 100, and 500 year storms this year and in 30 years.

    • Data on the cumulative probability of a flood event exceeding the 0cm, 15cm, and 30cm threshold depth is provided at the low, medium, and high climate scenarios for this year and in 30 years.

    • Information on historical events and flood adaptation, such as ID and name.

    This dataset includes First Street's aggregated flood risk summary statistics. The data is available in CSV format and is aggregated at the congressional district, county, and zip code level. The data allows you to compare FSF data with FEMA data. You can also view aggregated flood risk statistics for various modeled return periods (5-, 100-, and 500-year) and see how risk changes due to climate change (compare FSF 2020 and 2050 data). There are various Flood Factor risk score aggregations available including the average risk score for all properties (flood factor risk scores 1-10) and the average risk score for properties with risk (i.e. flood factor risk scores of 2 or greater). This is version 2.0 of the data and it covers the 50 United States and Puerto Rico. There will be updated versions to follow.

    If you are interested in acquiring First Street flood data, you can request to access the data here. More information on First Street's flood risk statistics can be found here and information on First Street's hazards can be found here.

    The data dictionary for the parcel-level data is below.

    Field Name

    Type

    Description

    fsid

    int

    First Street ID (FSID) is a unique identifier assigned to each location

    long

    float

    Longitude

    lat

    float

    Latitude

    zcta

    int

    ZIP code tabulation area as provided by the US Census Bureau

    blkgrp_fips

    int

    US Census Block Group FIPS Code

    tract_fips

    int

    US Census Tract FIPS Code

    county_fips

    int

    County FIPS Code

    cd_fips

    int

    Congressional District FIPS Code for the 116th Congress

    state_fips

    int

    State FIPS Code

    floodfactor

    int

    The property's Flood Factor, a numeric integer from 1-10 (where 1 = minimal and 10 = extreme) based on flooding risk to the building footprint. Flood risk is defined as a combination of cumulative risk over 30 years and flood depth. Flood depth is calculated at the lowest elevation of the building footprint (largest if more than 1 exists, or property centroid where footprint does not exist)

    CS_depth_RP_YY

    int

    Climate Scenario (low, medium or high) by Flood depth (in cm) for the Return Period (2, 5, 20, 100 or 500) and Year (today or 30 years in the future). Today as year00 and 30 years as year30. ex: low_depth_002_year00

    CS_chance_flood_YY

    float

    Climate Scenario (low, medium or high) by Cumulative probability (percent) of at least one flooding event that exceeds the threshold at a threshold flooding depth in cm (0, 15, 30) for the year (today or 30 years in the future). Today as year00 and 30 years as year30. ex: low_chance_00_year00

    aal_YY_CS

    int

    The annualized economic damage estimate to the building structure from flooding by Year (today or 30 years in the future) by Climate Scenario (low, medium, high). Today as year00 and 30 years as year30. ex: aal_year00_low

    hist1_id

    int

    A unique First Street identifier assigned to a historic storm event modeled by First Street

    hist1_event

    string

    Short name of the modeled historic event

    hist1_year

    int

    Year the modeled historic event occurred

    hist1_depth

    int

    Depth (in cm) of flooding to the building from this historic event

    hist2_id

    int

    A unique First Street identifier assigned to a historic storm event modeled by First Street

    hist2_event

    string

    Short name of the modeled historic event

    hist2_year

    int

    Year the modeled historic event occurred

    hist2_depth

    int

    Depth (in cm) of flooding to the building from this historic event

    adapt_id

    int

    A unique First Street identifier assigned to each adaptation project

    adapt_name

    string

    Name of adaptation project

    adapt_rp

    int

    Return period of flood event structure provides protection for when applicable

    adapt_type

    string

    Specific flood adaptation structure type (can be one of many structures associated with a project)

    fema_zone

    string

    Specific FEMA zone categorization of the property ex: A, AE, V. Zones beginning with "A" or "V" are inside the Special Flood Hazard Area which indicates high risk and flood insurance is required for structures with mortgages from federally regulated or insured lenders

    footprint_flag

    int

    Statistics for the property are calculated at the centroid of the building footprint (1) or at the centroid of the parcel (0)

  10. d

    TIGER/Line Shapefile, 2017, county, Renville County, MN, Address Ranges...

    • catalog.data.gov
    Updated Dec 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). TIGER/Line Shapefile, 2017, county, Renville County, MN, Address Ranges County-based Relationship File [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2017-county-renville-county-mn-address-ranges-county-based-relationship-fi
    Explore at:
    Dataset updated
    Dec 2, 2020
    Area covered
    Renville County, Minnesota
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Relationship File (ADDR.dbf) contains the attributes of each address range. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines Shapefile (EDGES.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (EDGES.shp). The TIGER/Line Files contain potential address ranges, not individual addresses. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  11. a

    ZIP Code Boundaries

    • hub.arcgis.com
    • data.indy.gov
    • +2more
    Updated Dec 18, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Indianapolis and Marion County - IndyGIS (2015). ZIP Code Boundaries [Dataset]. https://hub.arcgis.com/maps/IndyGIS::zip-code-boundaries/about
    Explore at:
    Dataset updated
    Dec 18, 2015
    Dataset authored and provided by
    City of Indianapolis and Marion County - IndyGIS
    Area covered
    Description

    Polygon file representing the ZIP code boundaries in Indianapolis and Marion County, Indiana.Data projection: NAD 1983 StatePlane Indiana East FIPS 1301 (US Feet)

  12. d

    TIGER/Line Shapefile, 2019, county, Tippah County, MS, Address Ranges...

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). TIGER/Line Shapefile, 2019, county, Tippah County, MS, Address Ranges County-based Relationship File [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2019-county-tippah-county-ms-address-ranges-county-based-relationship-file
    Explore at:
    Dataset updated
    Nov 12, 2020
    Area covered
    Mississippi, Tippah County
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Relationship File (ADDR.dbf) contains the attributes of each address range. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines Shapefile (EDGES.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (EDGES.shp). The TIGER/Line Files contain potential address ranges, not individual addresses. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  13. Asthma ED Visit Rates by ZIP

    • kaggle.com
    Updated Jan 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Asthma ED Visit Rates by ZIP [Dataset]. https://www.kaggle.com/datasets/thedevastator/asthma-ed-visit-rates-by-zip
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 22, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Asthma ED Visit Rates by ZIP

    Counts and Rates by Age Group in California

    By Health [source]

    About this dataset

    This dataset presents a comprehensive look into the prevalence of asthma among Californian residents in terms of emergency department visits. Using age-adjusted rates and county FIPS codes, it offers an accurate snapshot of the prevalence rates per 10,000 people and provides key insights into how this condition affects certain age groups by ZIP Code. With its easy to use associated map view, this dataset allows users to quickly gain deeper knowledge about this important health issue and craft meaningful solutions to address it

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains counts and rates of asthma related emergency department visits by ZIP Code and age group in California. This data can be useful when doing research on asthma related trends or attempting to find correlations between environmental factors, prevalence of disease and geography.

    • Select a year for analysis - the latest year for which data is available is the default selection, but other years are also listed in the dropdown menu.
    • Select an Age Group to analyze - use the provided dropdown menus to select one or more age groups (all ages, 0-17, 18+) if you wish to analyze two different age groups in your analysis.
    • Define a geographical area by selecting a ZIP code or County Fips code from which you wish to obtain your dataset from based on its availability or importance in your research question .
    • View and download relevant data - after selecting all of the desired criteria (year,Age group(s), ZIP code/County FIPS Code) click “View Data” then “Download” at the bottom right corner of window that opens up
      5 Analyze information found - use software such as Microsoft Excel or open source programs like Openoffice Calc to gain insight into your downloaded dataset through statistics calculations, graphs etc.. In particular look out for anomalies that could signify further investigation

    Research Ideas

    • Identifying the geographic clusters of asthma sufferers by analyzing the rate of emergency department visits with geographic mapping.
    • Developing outreach initiatives to areas with a high rate of ED visits for asthma to provide education, interventions and resources designed towards increasing preventive care and reducing preventable complications due to lack of access or knowledge about available services in these communities.
    • Assessing disparities in ED visit rates for asthma between age groups as well as between urban and rural areas or different socio-economic groups within counties or ZIP codes in order to identify areas where there is a need for increased interventions, services and other resources related to asthma care in order to reduce the burden or severity of this chronic condition among particularly vulnerable population groups

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

    Columns

    File: Asthma_Emergency_Department_Visit_Rates_by_ZIP_Code.csv | Column name | Description | |:----------------------|:------------------------------------------------------------------------------------------------------------------| | Year | The year the data was collected. (Integer) | | ZIP code | The ZIP code of the area the data was collected from. (String...

  14. d

    ZipCodeWorld gold [United States] edition

    • dataone.org
    • borealisdata.ca
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hexasoft Development Sdn. Bhd.:Penang, Malaysia (2024). ZipCodeWorld gold [United States] edition [Dataset]. http://doi.org/10.5683/SP3/KKP7TP
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset provided by
    Borealis
    Authors
    Hexasoft Development Sdn. Bhd.:Penang, Malaysia
    Time period covered
    Jan 1, 2000
    Area covered
    United States
    Description

    The database includes ZIP code, city name, alias city name, state code, phone area code, city type, county name, country FIPS, time zone, day light saving flag, latitude, longitude, county elevation, Metropolitan Statistical Area (MSA), Primary Metropolitan Statistical Area (PMSA), Core Based Statistical Area (CBSA) and census 2000 data on population by race, average household income, and average house value.

  15. s

    ZIP Code Boundaries, United States (Q4 2011)

    • searchworks.stanford.edu
    zip
    Updated Mar 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ZIP Code Boundaries, United States (Q4 2011) [Dataset]. https://searchworks.stanford.edu/view/wv941tj0392
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 29, 2025
    Area covered
    United States
    Description

    This layer provides zip code data for view and analysis in GIS and interactive web mapping applications.

  16. s

    ZIP Code Boundaries, United States (Q3 2004)

    • searchworks.stanford.edu
    zip
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ZIP Code Boundaries, United States (Q3 2004) [Dataset]. https://searchworks.stanford.edu/view/hf360kp4258
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2025
    Area covered
    United States
    Description

    This layer provides zip code data for view and analysis in GIS and interactive web mapping applications.

  17. First Street Community Risk Data V1.3

    • zenodo.org
    • data.niaid.nih.gov
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    First Street Foundation; First Street Foundation (2024). First Street Community Risk Data V1.3 [Dataset]. http://doi.org/10.5281/zenodo.5711172
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    First Street Foundation; First Street Foundation
    Description

    These datasets provide aggregated community risk scores for exposure to flooding using the First Street Foundation Flood Model (Version 1.3) at the county and zip code level. county_flood_score and zcta_flood_score provide the overall community risk score. county_flood_category_score and zcta_flood_category_score provide the risk score to specific categories of infrastructure. Each category; critical infrastructure, social infrastructure, residential properties, roads, and commercial properties, is a component of the overall community risk.

    If you are interested in acquiring First Street flood data, you can request to access the data here. More information on First Street's flood risk statistics can be found here and information on First Street's hazards can be found here.

    The following fields are in the overall risk datasets:

    Attribute

    Description

    county_id

    The county FIPS code

    count

    The count (#) of infrastructure facilities

    flood_score

    A score of 1, 2, 3, 4, or 5 is shown. Community risk rankings represent risk as Minimal, Minor (1), Moderate (2), Major (3), Severe (4) and Extreme (5). Minimal risk is a case where no facilities within a category have flood risk. County level risks are ranked based on how their total depths compare to counties across the country.

    The following fields are in the category risk datasets:

    Attribute

    Description

    FIPS

    County FIPS code

    ZIP_CODE

    ZIP code

    count

    The approximate length of roads (miles) within the geography of aggregation (i.e. ZIP Code, County)

    flood_score

    A score (Community Risk level) of 0, 1, 2, 3, 4, or 5 is shown. Community risk levels represent risk as Minimal (0), Minor (1), Moderate (2), Major (3), Severe (4) and Extreme (5). Minimal risk is a case where no facilities within a category have flood risk. ZIP Code and County level risks are assessed based on how their total depths compare to ZIP Codes and Counties across the country.

    risk_direction

    A score of 1, -1, or 0 is shown. These note if flood risk is expected to increase (1), decrease (-1), or remain constant (0) over the next 30 years.

    infrastructure_category_id

    1= critical infrastructure, 4 = social infrastructure , 6 = residential properties, 8 - roads, 9 = commercial properties

  18. d

    TIGER/Line Shapefile, 2013, county, Pike County, IN, Current Topological...

    • catalog.data.gov
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). TIGER/Line Shapefile, 2013, county, Pike County, IN, Current Topological Faces (Polygons With All Geocodes) Shapefile [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2013-county-pike-county-in-current-topological-faces-polygons-with-all-geo
    Explore at:
    Dataset updated
    Jan 20, 2021
    Area covered
    Pike County
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2010 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then, be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.

  19. l

    2020 Census Blocks

    • geohub.lacity.org
    • data.lacounty.gov
    • +3more
    Updated Mar 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). 2020 Census Blocks [Dataset]. https://geohub.lacity.org/items/8a29319474fe44bb96152d0be8e778af
    Explore at:
    Dataset updated
    Mar 22, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Blocks are typically bounded by streets, roads or creeks. In cities, a census block may correspond to a city block, but in rural areas where there are fewer roads, blocks may be limited by other features. The Census Bureau established blocks covering the entire nation for the first time in 1990.There are less number of Census Blocks within Los Angeles County in 2020 Census TIGER/Line Shapefiles, compared in 2010.Updated:1. June 2023: This update includes 2022 November Santa Clarita City annexation and the addition of "Kinneloa Mesa" community (was a part of unincorporated East Pasadena). Added new data fields FIP_CURRENT to CITYCOMM_CURRENT to reflect new/updated city and communities. Updated city/community names and FIP codes of census blocks that are in 2022 November Santa Clarita City annexation and new Kinneloa Mesa community (look for FIP_Current, City_Current, Comm_Current field values)2. February 2023: Updated few Census Block CSA values based on Demographic Consultant inquiry/suggestions3. April 2022: Updated Census Block data attribute values based on Supervisorial District 2021, Service Planning Area 2022, Health District 2022 and ZIP Code Tabulation Area 2020Created: March 2021How This Data is Created? This census geographic file was downloaded from Census Bureau website: https://www2.census.gov/geo/tiger/TIGER2020PL/STATE/06_CALIFORNIA/06037/ on February 2021 and customized for LA County. New data fields are added in the census blocks 2020 data and populated with city/community names, LA County FIPS, 2021 Supervisorial Districts, 2020 Census Zip Code Tabulation Area (ZCTA) and some administrative boundary information such as 2022 Health Districts and 2022 Service Planning Areas (SPS) are also added. "Housing20" field value and "Pop20" field value is populated with PL 94-171 Redistricting Data Summary File: Decennial Census P.L. 94-171 Redistricting Data Summary Files. Similarly, "Feat_Type" field is added and populated with water, ocean and land values. Five new data fields (FIP_CURRENT to CITYCOMM_CURRENT) are added in June 2023 updates to accommodate 2022 Santa Clarita city annexation. City/community names and FIP codes of census blocks affected by 2022 November Santa Clarita City annexation are assigned based on the location of block centroids. In June 2023 update, total of 36 blocks assigned to the City of Santa Clarita that were in Unincorporated Valencia and Castaic. Note: This data includes 3 NM ocean (FEAT_TYPE field). However, user can use a definition query to remove those. Data Fields: 1. STATE (STATEFP20): State FIP, "06" for California, 2. COUNTY (COUNTYFP20): County FIP "037" for Los Angeles County, 3. CT20: (TRACTCE20): 6-digit census tract number, 4. BG20: 7-digit block group number, 5. CB20 (BLOCKCE20): 4-digit census block number, 6. CTCB20: Combination of CT20 and CB20, 7. FEAT_TYPE: Land use types such as water bodies, ocean (3 NM ocean) or land, 8. FIP20: Los Angeles County FIP code, 9. BGFIP20: Combination of BG20 and FIP20, 10. CITY: Incorporated city name, 11. COMM: Unincorporated area community name and LA City neighborhood, also known as "CSA", 12. CITYCOMM: City/Community name label, 13. ZCTA20: Parcel specific zip codes, 14. HD12: 2012 Health District number, 15. HD_NAME: Health District name, 16. SPA22: 2022 Service Planning Area number, 17. SPA_NAME: Service Planning Area name, 18. SUP21: 2021 Supervisorial District number, 19. SUP_LABEL: Supervisorial District label, 20. POP20: 2020 Population (PL 94-171 Redistricting Data Summary File - Total Population), 21. HOUSING20: 2020 housing (PL 94-171 Redistricting Data Summary File - Total Housing),22. FIP_CURRENT: Los Angeles County 2023 FIP code, as of June 2023,23. BG20FIP_CURRENT: Combination of BG20 and 2023 FIP, as of June 2023,24. CITY_CURRENT: 2023 Incorporated city name, as of June 2023,25. COMM_CURRENT: 2023 Unincorporated area community name and LA City neighborhood, also known as "CSA", as of June 2023,26. CITYCOMM_CURRENT: 2023 City/Community name label, as of June 2023.

  20. Computer and Broadband Internet Access (by Zip Code) 2017

    • opendata.atlantaregional.com
    Updated Jun 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2019). Computer and Broadband Internet Access (by Zip Code) 2017 [Dataset]. https://opendata.atlantaregional.com/datasets/GARC::computer-and-broadband-internet-access-by-zip-code-2017/explore?showTable=true
    Explore at:
    Dataset updated
    Jun 26, 2019
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show populations with computer and internet access by Zip Code Tabulation Area in the Atlanta region.

    The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.

    The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.

    For further explanation of ACS estimates and margin of error, visit Census ACS website.

    Naming conventions:

    Prefixes:

    None

    Count

    p

    Percent

    r

    Rate

    m

    Median

    a

    Mean (average)

    t

    Aggregate (total)

    ch

    Change in absolute terms (value in t2 - value in t1)

    pch

    Percent change ((value in t2 - value in t1) / value in t1)

    chp

    Change in percent (percent in t2 - percent in t1)

    Suffixes:

    None

    Change over two periods

    _e

    Estimate from most recent ACS

    _m

    Margin of Error from most recent ACS

    _00

    Decennial 2000

    Attributes:

    SumLevel

    Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, SuperDistrict, etc)

    GEOID

    Census tract Federal Information Processing Series (FIPS) code

    NAME

    Name of geographic unit

    Planning_Region

    Planning region designation for ARC purposes

    Acres

    Total area within the tract (in acres)

    SqMi

    Total area within the tract (in square miles)

    County

    County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)

    CountyName

    County Name

    TotalHH_e

    # Total households, 2017

    TotalHH_m

    # Total households, 2017 (MOE)

    WithAComputer_e

    # Households with a computer, 2017

    WithAComputer_m

    # Households with a computer, 2017 (MOE)

    pWithAComputer_e

    % Households with a computer, 2017

    pWithAComputer_m

    % Households with a computer, 2017 (MOE)

    WithBroadband_e

    # Households with broadband Internet, 2017

    WithBroadband_m

    # Households with broadband Internet, 2017 (MOE)

    pWithBroadband_e

    % Households with broadband Internet, 2017

    pWithBroadband_m

    % Households with broadband Internet, 2017 (MOE)

    last_edited_date

    Last date the feature was edited by ARC

    Source: U.S. Census Bureau, Atlanta Regional Commission

    Date: 2013-2017

    For additional information, please visit the Census ACS website.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of New York (2025). New York State ZIP Codes-County FIPS Cross-Reference [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/new-york-state-zip-codes-county-fips-cross-reference

New York State ZIP Codes-County FIPS Cross-Reference

Explore at:
Dataset updated
Jul 12, 2025
Dataset provided by
State of New York
Area covered
New York
Description

A listing of NYS counties with accompanying Federal Information Processing System (FIPS) and US Postal Service ZIP codes sourced from the NYS GIS Clearinghouse.

Search
Clear search
Close search
Google apps
Main menu