Calculates zonal statistics on polygons from many categorical rasters for multiple attributes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set is composed of two parts each having its proper origins, formats and rights. This data set was used to answer a challenge given by a high school to help students to learn the problem of population density and needs.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
MSZSI: Multi-Scale Zonal Statistics [AgriClimate] Inventory -------------------------------------------------------------------------------------- MSZSI is a data extraction tool for Google Earth Engine that aggregates time-series remote sensing information to multiple administrative levels using the FAO GAUL data layers. The code at the bottom of this page (metadata) can be pasted into the Google Earth Engine JavaScript code editor and ran at https://code.earthengine.google.com/. Please refer to the associated publication: Peter, B.G., Messina, J.P., Breeze, V., Fung, C.Y., Kapoor, A. and Fan, P., 2024. Perspectives on modifiable spatiotemporal unit problems in remote sensing of agriculture: evaluating rice production in Vietnam and tools for analysis. Frontiers in Remote Sensing, 5, p.1042624. https://www.frontiersin.org/journals/remote-sensing/articles/10.3389/frsen.2024.1042624 Input options: [1] Country of interest [2] Start and end year [3] Start and end month [4] Option to mask data to a specific land-use/land-cover type [5] Land-use/land-cover type code from CGLS LULC [6] Image collection for data aggregation [7] Desired band from the image collection [8] Statistics type for the zonal aggregations [9] Statistic to use for annual aggregation [10] Scaling options [11] Export folder and label suffix Output: Two CSVs containing zonal statistics for each of the FAO GAUL administrative level boundaries Output fields: system:index, 0-ADM0_CODE, 0-ADM0_NAME, 0-ADM1_CODE, 0-ADM1_NAME, 0-ADMN_CODE, 0-ADMN_NAME, 1-AREA_PERCENT_LULC, 1-AREA_SQM_LULC, 1-AREA_SQM_ZONE, 2-X_2001, 2-X_2002, 2-X_2003, ..., 2-X_2020, .geo PREPROCESSED DATA DOWNLOAD The datasets available for download contain zonal statistics at 2 administrative levels (FAO GAUL levels 1 and 2). Select countries from Southeast Asia and Sub-Saharan Africa (Cambodia, Indonesia, Lao PDR, Myanmar, Philippines, Thailand, Vietnam, Burundi, Kenya, Malawi, Mozambique, Rwanda, Tanzania, Uganda, Zambia, Zimbabwe) are included in the current version, with plans to extend the dataset to contain global metrics. Each zip file is described below and two example NDVI tables are available for preview. Key: [source, data, units, temporal range, aggregation, masking, zonal statistic, notes] Currently available: MSZSI-V2_V-NDVI-MEAN.tar: [NASA-MODIS, NDVI, index, 2001–2020, annual mean, agriculture, mean, n/a] MSZSI-V2_T-LST-DAY-MEAN.tar: [NASA-MODIS, LST Day, °C, 2001–2020, annual mean, agriculture, mean, n/a] MSZSI-V2_T-LST-NIGHT-MEAN.tar: [NASA-MODIS, LST Night, °C, 2001–2020, annual mean, agriculture, mean, n/a] MSZSI-V2_R-PRECIP-SUM.tar: [UCSB-CHG-CHIRPS, Precipitation, mm, 2001–2020, annual sum, agriculture, mean, n/a] MSZSI-V2_S-BDENS-MEAN.tar: [OpenLandMap, Bulk density, g/cm3, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-ORGC-MEAN.tar: [OpenLandMap, Organic carbon, g/kg, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-PH-MEAN.tar: [OpenLandMap, pH in H2O, pH, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-WATER-MEAN.tar: [OpenLandMap, Soil water, % at 33kPa, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-SAND-MEAN.tar: [OpenLandMap, Sand, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-SILT-MEAN.tar: [OpenLandMap, Silt, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_S-CLAY-MEAN.tar: [OpenLandMap, Clay, %, static, n/a, agriculture, mean, at depths 0-10-30-60-100-200] MSZSI-V2_E-ELEV-MEAN.tar: [MERIT, [elevation, slope, flowacc, HAND], [m, degrees, km2, m], static, n/a, agriculture, mean, n/a] Coming soon MSZSI-V2_C-STAX-MEAN.tar: [OpenLandMap, Soil taxonomy, category, static, n/a, agriculture, area sum, n/a] MSZSI-V2_C-LULC-MEAN.tar: [CGLS-LC100-V3, LULC, category, 2015–2019, mode, none, area sum, n/a] Data sources: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13Q1 https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2 https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_BULKDENS-FINEEARTH_USDA-4A1H_M_v02 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_ORGANIC-CARBON_USDA-6A1C_M_v02 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_PH-H2O_USDA-4C1A2A_M_v02 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_WATERCONTENT-33KPA_USDA-4B1C_M_v01 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_CLAY-WFRACTION_USDA-3A1A1A_M_v02 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_SAND-WFRACTION_USDA-3A1A1A_M_v02 https://developers.google.com/earth-engine/datasets/catalog/OpenLandMap_SOL_SOL_GRTGROUP_USDA-SOILTAX_C_v01...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Climate indicators are used in several statistical models for many research areas and are especially important for modelling Climate Sensitive Diseases (CSD) incidence. Those models usually adopt a lattice structure, where their data is aggregated at administrative boundaries (e.g, disease incidence), but climate indicators are usually presented in a continuous, regular grid format.
To make climate indicators compatible with lattice structures, zonal statistics may be adopted. Zonal statistics are descriptive statistics calculated using a set of cells that spatially intersect a given spatial boundary. For each boundary in a map, statistics like average, maximum value, minimum value, standard deviation, and sum are obtained to represent the cell's values that intersect the boundary.
This dataset presents zonal statistics of climate indicators computed from Copernicus ERA5-Land daily aggregates for the Brazilian municipalities, for the year 2024.
Instructions for an exercise in the USFS Lidar Class.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Zonal statistics characterising estuary flooding extents, depths, currents and waves for 8 estuaries in South Wales for a variety of storm and salt marsh vegetation conditions
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents daily weather indicators for Brazilian municipalities computed with zonal statistics using the data from the BR-DWGD project (version 3.2.3), from 1961-01-01 to 2024-03-20.
File | Indicator | Unit |
pr_3.2.3.parquet | Precipitation | mm |
ETo_3.2.3.parquet | Evapotranspiration | mm |
Tmax_3.2.3.parquet | Maximum temperature | °C |
Tmin_3.2.3.parquet | Minimum temperature | °C |
Rs_3.2.3.parquet | Solar radiation | MJm-2 |
u2_3.2.3.parquet | Wind speed at 2 m height | m/s |
RH_3.2.3.parquet | Relative humidity | % |
The methodology to compute the zonal statistics follows https://doi.org/10.1017/eds.2024.3 .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This feature layer contains geographically summarized data for temperature and precipiation thresholds of observed historical climate and modeled projections from the 5th National Climate Assessment. The methodology for generating the summaries can be found at the Climate Resilience Information System. Layer contents:43 climate variablesObserved history by gridded climatology (Livneh and nClimGrid)Modeled history for 16 general circulation models (GCMs) using two downscaling methods (LOCA2 and STAR), plus ensemblesFuture projections across three scenarios (shared socioeconomic pathways or SSPs) for 16 GCMs using two downscaling methods (LOCA2 and STAR), plus ensemblesDecadal and annual summariesWatershed boundary HUC 8s (link)Known issues and limitationsThere are no SSP370 data for STAR; this affects all associated GCMs and ensembles.Three files for STAR have yet to be processed and incorporated: IPSL-CM6A-LR_prmax20day_ssp245_historical_1950_2014.nc, GFDL-ESM4_prmax30day_ssp245_historical_1950_2014.nc, and BCC-CSM2-MR_tmin-jja_ssp585_2_2059_2100.nc.Using the DataDue to the size of the layer, performance is limited when making advanced queries. Decadal averages are served in the feature layer and can be used for visualization.Annual averages are served using related tables based on the Geographic Identifier. These layers can be analyzed or subsetted. Visualziation in the Map Viewer is only possible if the fields are joined to the features using the Geographic Identifier.Additional tools are provided in the CRIS Developers Hub to assist in subsetting and analyzing these data. Additional LayersThe CRIS Open Data Hub provides a variety of geographically summarized data, including much smaller and performant summaries of climate projections based on the blended ensembles used in the 5th National Climate Assessment.
This map shows the change in particulate matter 2.5 (PM 2.5) air quality data for the US between 2010 and 2016 based on NASA SEDAC gridded data. The color indicates better or worse air quality, and the size of the symbol indicates population growth.This map shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into state, county, congressional district (116th) and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality in the United States, including Puerto Rico. A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis. The county and state layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Each layer has been enriched with a set of 2019 US demographic attributes (excluding Puerto Rico) apportioned to the geography in order to map patterns alongside each other. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries:50km hex bins generated using the Generate Tessellation toolStates and counties come from 2018 TIGER boundaries with coastlines clipped116th Congressional Districts come from this ArcGIS Living Atlas layerData processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The Enrich tool was run to add 2019 Esri demographic and 2014-2018 ACS attributes to the geographies. Attributes such as population, poverty, minority population, and others were added to the layer.To create the population-weighted attributes on the state and county layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and summarized within the state and county boundaries.The summation of these values were then divided by the total population of each state/county.
Population density in 2010 within the boundaries of the Narragansett Bay watershed, the Southwest Coastal Ponds watershed, and the Little Narragansett Bay watershed. The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 2010 10m cell population density raster was produced using Rhode Island (2011) state land use data, Massachusetts (2005) state land use, Connecticut (2011) NLCD land use data, and U.S. Census data (2010). To generate a population estimate (number of persons) for any given area within the boundaries of this raster, use the Zonal Statistics as Table tool to sum the 10m cell density values within your zone dataset (e.g., watershed polygon layer). For more information, please reference the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 14 parquet-format files with monthly data.
File | Indicator | Unit |
aet.parquet | Actual Evapotranspiration | mm |
def.parquet | Climate Water Deficit | mm |
pdsi.parquet | Palmer Drought Severity Index (PDSI) | unitless |
pet.parquet | Precipitation | mm |
ppt.parquet | Potential evapotranspiration | mm |
q.parquet | Runoff | mm |
soil.parquet | Soil Moisture | mm |
srad.parquet | Downward surface shortwave radiation | W/m2 |
swe.parquet | Snow water equivalent | mm |
tmax.parquet | Maximun Temperature | °C |
tmin.parquet | Minimum Temperature | °C |
vap.parquet | Vapor pressure | kPa |
vpd.parquet | Vapor Pressure Deficit | kpq |
ws.parquet | Wind speed | m/s |
This dataset is a polygon coverage of counties limited to the extent of the Pond Creek coal bed resource areas and attributed with statistics on the thickness of the Pond Creek coal zone, its elevation, and overburden thickness, in feet. The file has been generalized from detailed geologic coverages found elsewhere in Professional Paper 1625-C.
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
SHIPS: Statistical Tropical Cyclone Intensity Forecast Technique Development (SHIPS: Statistical Tropical Cyclone Intensity Forecast Technique Development (Atlantic 7-days predictor)) cdm_data_type=Point Conventions=COARDS, CF-1.10, ACDD-1.3 Creator_email=sandra.bringas-at-noaa.gov Creator_name=Sandra Bringas Easternmost_Easting=-6.0 featureType=Point geospatial_lat_max=51.9 geospatial_lat_min=7.2 geospatial_lat_units=degrees_north geospatial_lon_max=-6.0 geospatial_lon_min=-126.6 geospatial_lon_units=degrees_east history=https://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp infoUrl=??? institution=??? keywords_vocabulary=GCMD Science Keywords Northernmost_Northing=51.9 source=https://rammb.cira.colostate.edu/research/tropical_cyclones/ships/developmental_data.asp sourceUrl=(local files) Southernmost_Northing=7.2 standard_name_vocabulary=CF Standard Name Table v70 subsetVariables=storm_name, storm_identifier, TYPE, DELV, COHC, NDMX, ND30, ND28, ND26, NDFR, NOHC time_coverage_end=2023-10-28T18:00:00Z time_coverage_start=1982-06-02T12:00:00Z Westernmost_Easting=-126.6
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This directory contains vector and raster data for a lesson on automation with Make (https://github.com/earthlab-education/ea-applications-make-tutorial). The automated process is a zonal statistics analysis that can be executed using point or polygon data. The polygon vector data is a shapefile of Boulder County, Colorado from the Colorado Department of Public Health and Environment open data portal. The raster data is a GeoTIFF of the National Land Cover Database for 2011 cropped to Boulder County, Colorado. The point vector data are 50 evenly spaced sample points across the GeoTIFF, including the nodata/mask area.
Financial overview and grant giving statistics of Basic Institute for Zonal African Advancement
This layer shows particulate matter in the air sized 2.5 micrometers of smaller (PM 2.5). The data is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement is micrograms per cubic meter.The layer shows the annual average PM 2.5 from 1998 to 2016, highlighting if the overall mean for an area meets the World Health Organization guideline of 10 micrograms per cubic meter annually. Areas that don't meet the guideline and are above the threshold are shown in red, and areas that are lower than the guideline are in grey.The data is averaged for each year and over the the 19 years to provide an overall picture of air quality globally. Some of the things we can learn from this layer:What is the average annual PM 2.5 value over 19 years? (1998-2016)What is the annual average PM 2.5 value for each year from 1998 to 2016?What is the statistical trend for PM 2.5 over the 19 years? (downward or upward)Are there hot spots (or cold spots) of PM 2.5 over the 19 years?How many people are impacted by the air quality in an area?What is the death rate caused by the joint effects of air pollution?Choose a different attribute to symbolize in order to reveal any of the patterns above.A space time cube was performed on a multidimensional mosaic version of the data in order to derive an emerging hot spot analysis, trends, and a 19-year average. The country and administrative 1 layers provide a population-weighted PM 2.5 value to emphasize which areas have a higher human impact. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.Boundaries and population figures:Antarctica is excluded from all maps because it was not included in the original NASA grids.50km hex bins generated using the Generate Tessellation tool - projected to Behrmann Equal Area projection for analysesPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Administrative boundaries from World Administrative Divisions layer from ArcGIS Living Atlas - projected to Behrmann Equal Area projection for analyses and hosted in Web MercatorSources: Garmin, CIA World FactbookPopulation figures generated using Zonal Statistics from the World Population Estimate 2016 layer from ArcGIS Living Atlas.Country boundaries from Esri 2019 10.8 Data and Maps - projected to Behrmann Equal Area projection for analyses and hosted in Web Mercator. Sources: Garmin, Factbook, CIAPopulation figures attached to the country boundaries come from the World Population Estimate 2016 Sources Living Atlas layer Data processing notes:NASA's GeoTIFF files for 19 years (1998-2016) were first brought into ArcGIS Pro 2.5.0 and put into a multidimensional mosaic dataset.For each geography level, the following was performed: Zonal Statistics were run against the mosaic as a multidimensional layer.A Space Time Cube was created to compare the 19 years of PM 2.5 values and detect hot/cold spot patterns. To learn more about Space Time Cubes, visit this page.The Space Time Cube is processed for Emerging Hot Spots where we gain the trends and hot spot results.The layers are hosted in Web Mercator Auxillary Sphere projection, but were processed using an equal area projection: Behrmann. If using this layer for analysis, it is recommended to start by projecting the data back to Behrmann.The country and administrative layer were dissolved and joined with population figures in order to visualize human impact.The dissolve tool ensures that each geographic area is only symbolized once within the map.Country boundaries were generalized post-analysis for visualization purposes. The tolerance used was 700m. If performing analysis with this layer, find detailed country boundaries in ArcGIS Living Atlas. To create the population-weighted attributes on the country and Admin 1 layers, the hex value population values were used to create the weighting. Within each hex bin, the total population figure and average PM 2.5 were multiplied.The hex bins were converted into centroids and the PM2.5 and population figures were summarized within the country and Admin 1 boundaries.The summation of the PM 2.5 values were then divided by the total population of each geography. This population value was determined by summarizing the population values from the hex bins within each geography.Some artifacts in the hex bin layer as a result of the input NASA rasters. Because the gridded surface is created from multiple satellites, there are strips within some areas that are a result of satellite paths. Some areas also have more of a continuous pattern between hex bins as a result of the input rasters.Within the country layer, an air pollution attributable death rate is included. 2016 figures are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.To learn the techniques used in this analysis, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie.
This dataset is a polygon coverage of counties limited to the extent of the Fire Clay coal zone resource areas and attributed with statistics on the thickness of the Fire Clay coal bed, its elevation, and overburden thickness, in feet. The file has been generalized from detailed geologic coverages found elsewhere in Professional Paper 1625-C. This resource model for the Fire Clay coal zone must be considered provisional, because the correlation of the zone continues to be evaluated in West Virginia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population distribution of PNG by province according to malaria incidence strata, 2019.
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Calculates zonal statistics on polygons from many categorical rasters for multiple attributes